Answer:
The general equation for conservation of momentum during a collision between n number of objects is given as: [m i ×v i a ] = [m i ×v i b ] Where m i is the mass of object i , v i a is the velocity of object i before the collision, and v i b is the velocity of object i after the collision.
Explanation:
Answer:
His third law states that for every action (force) in nature there is an equal and opposite reaction. In other words, if object A exerts a force on object B, then object B also exerts an equal and opposite force on object A.
<h3>
Answer:</h3>
1.3 Amps
<h3>
Explanation:</h3>
<u>We are given;</u>
A circuit with resistors, R1 and R2
R1 = 7 Ω
R2 = 11 Ω
Voltage = 24 V
We are required to calculate the current in the circuit.
<h3>Step 1: We need to find the effective resistance.</h3>
When resistors are arranged in series, the effective resistance is calculated by;
Rt = R₁ + R₂ + R₃ + ..........Rₙ
Therefore;
Total resistance = 7 + 11
= 18 Ω
<h3>Step 2: Calculate the current in the circuit</h3>
From the ohm's law;
V = IR
Rearranging the formula;
I = V/R
Thus;
I = 24 V ÷ 18 Ω
= 1.333 Amps
= 1.3 Amps
Thus, the current in the circuit is 1.3 Amps
Heat required to raise the temperature of a given system is

here we know that
m = mass
s = specific heat capacity
= change in temperature
now as we know that
mass of wood = 5 kg
mass of aluminium pan = 2 kg
change in temperature = 45 - 20 = 25 degree C
specific heat capacity of wood = 1700 J/kg C
specific heat capacity of aluminium = 900 J/kg C
now here we will find the total heat to raise the temperature of both




So heat required to raise the temperature of the system is 257500 J
Answer:
angular velocity(ω) is the rate change of angular displacement.
ω=θ/t and it SI unit is rad/s
Explanation:
this is very similar with the definition of linear velocity (rate of change of displacement). it specifies the angular speed of an object and the axis about which the object is rotating.