Answer:
Check the first and the third choices:
<u><em /></u>
- <u><em>a. The temperature of a gas is directly proportional to its volume</em></u>
- <u><em>b. The temperature-to-volume ratio of a gas is constant.</em></u>
Explanation:
Rewrite the table for better understanding:
Temperature of gas (K) Volume of gas (L)
298 4.55
315 4.81
325 4.96
335 ?
Calculate the ratios temperature to volume with 3 significant figures:
Then, those numbers show a <u><em>constant temperature-to-volume ratio</em></u>, which may be expressed in a formula as:
- Temperature / Volume = constant, which is a directly proportional variation (the volume increases in a constant proportion to the increase of the temperature).
Hence, the correct choices are:
- The temperature of a gas is directly proportional to its volume (first statement), and
- The emperature-to-volume ratio of a gas is constant (third statement).
<h2>The man have to apply force of 160 N</h2>
Explanation:
The work done to lift the bag of weight mg through height 2.5 m is 400 J
The work done can be found by relation W = mg x h
Thus mg =
=
= 160 N
Therefore the man have to apply the force of 160 N
The height difference is found by

Then the change in potential energy is
<span>In an earthquake, a P wave is a longitudinal wave. It moves through soil and rock as a C. series of compressions and rarefactions.</span>
Answer: 87500J
Explanation:
Given that,
Power exerted by crane = 3,500 W
Time taken = 25 seconds
work done by crane = ?
Since power is the rate of work done per unit time, then power is workdone by the crane divided by the time taken.
i.e power = work / time
3,500 W = work / 25 seconds
Work = 3500W x 25 seconds
Work = 87500J
Thus, 87500 joules of work was done by the crane.