Answer:
4 s
Explanation:
Given:
Δx = 12 m
v₀ = 6 m/s
v = 0 m/s
Find: t
Δx = ½ (v + v₀) t
12 m = ½ (0 m/s + 6 m/s) t
t = 4 s
Answer:
27.1 m/s
Explanation:
Given that at a race car driving event, a staff member notices that the skid marks left by the race car are 9.06 m long. The very experienced staff member knows that the deceleration of a car when skidding is -40.52 m/s2.
Using third equation of motion,
V^2 = U^2 + 2aS
Since the car is decelerating, the final velocity V = 0
Substitute all the parameter into the equation above,
0 = U^2 - 2 * 40.52 * 9.06
U^2 = 734.22
U = 
U = 27.096
U = 27.1 m/s approximately
Therefore, the staff member can estimate for the original speed of the race car to be 27.1 m/s if it came to a stop during the skid
Yeah, it's every state. Atoms need a certain quanta of energy to jump to each state of energy, and therefore change state depending on how much energy is absorbed and/or released. This applies to all states of matter.
Answer:
A
Explanation:
As distance increases, velocity increases.
Answer:
Explanation:
Given
mass of Flywheel 
mass of bus 
radius of Flywheel 
final speed of bus 
Conserving Energy i.e.
0.9(Rotational Energy of Flywheel)= change in Kinetic Energy of bus
Let
be the angular velocity of Flywheel




