Humans hear frequencies from 20 Hz<span> (low) up to </span>20,000 Hz (high)
Answer: 20 m/s
Explanation: To solve this problem we have to consider the expression of the kinetic energy given by:
Ekinetic=(1/2)*(m*v^2)
then E=0.5*30Kg*(20 m/s)^2=15*400=6000J
This is the part of where you can easily slip away
In the field of electromagnetism, when two charged plates that are situated opposite to each other by a certain distance, it forms an energy called the electric field. This energy is due to the difference in potential energy with respect to distance. Thus,
E = V/d
However, the voltage in volts is energy per coulomb. Thus,
V = (8x10-17 J/electron)*(1electron/1.60218x10^-19 C)
V = 499.32 volts
Therefore,
E = 499.32 volts /2.5 m
E = 199.73 N/C
The electric field that caused the change in potential energy is equal to 199.73 Newtons per Coulomb.
It is through biopsychological feedback.
A class of chemical called a neurotransmitter is important in the transmission of nerve impulses. Neurotransmitters are packaged by the cell into small, membrane-bound sacs called vesicles. Upon receiving a chemical signal, the vesicles move toward the cell membrane and fuse with it, releasing the enclosed neurotransmitters from the terminal end of the nerve cell.