Answer:
astronauts age is 32 years
correct option is e 32 years
Explanation:
given data
travels = 20 light year
stay = 2 year
return = 52 years
to find out
astronauts aged
solution
we know here they stay 2 year so time taken in traveling is
time in traveling = ( 52 -2 ) = 50 year
so it mean 25 year in going and 25 years in return
and distance is given 20 light year
so speed will be
speed = distance / time
speed = 20 / 25 = 0.8 light year
so time is
time = 
time = 
time = 15 year
so age is 15 + 2 + 15
so astronauts age is 32 years
so correct option is e 32 years
Answer:
As ice melts into water, kinetic energy is being added to the particles. This causes them to be 'excited' and they break the bonds that hold them together as a solid, resulting in a change of state: solid -> liquid.
Explanation:
The complete question is
What modifications did kepler make to copernicus’s model? check all that apply. planetary orbits are elliptical. planets closer to the sun move faster. planets spin in an epicycle while orbiting earth. venus has phases due to its orbiting of the sun. earth’s rotation causes the rising and setting of the sun.
Answer:
Planetary orbits are elliptical.
Planets closer to the Sun move faster.
Explanation:
The first option is based on the first law that states that the planets orbit the sun in ellipses, with the sun at one focus of the ellipse.
The second option is based on the third law that states that the square of the time of revolution about the sun is directly proportional to the cube of the mean radius of orbit of the planet.
Answer:
41.02m
Explanation:
Given parameters:
Initial velocity = 0m/s
Final velocity = 96km/hr
Time taken = 3.07s
Unknown:
Distance traveled by the time the final speed was achieved = ?
Solution:
To solve this problem, we first find the acceleration of the car;
Acceleration =
v is the final velocity
u is the initial velocity
t is the time taken
Now convert the the final velocity to m/s;
96km/hr to m/s;
1 km/hr = 0.278m/s
96km/hr = 96 x 0.278 = 26.7m/s
Now;
Acceleration =
= 8.69m/s²
So;
v² = u² + 2as
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance
26.7² = 0² + 2 x 8.69 x s
712.89 = 17.38s
s = 41.02m