Solution :
Given data is :
Density of the milk in the tank, 
Length of the tank, x = 9 m
Height of the tank, z = 3 m
Acceleration of the tank, 
Therefore, the pressure difference between the two points is given by :

Since the tank is completely filled with milk, the vertical acceleration is 

Therefore substituting, we get




Therefore the maximum pressure difference in the tank is Δp = 47.87 kPa and is located at the bottom of the tank.
Answer:
The maximum potential energy of the system is 0.2 J
Explanation:
Hi there!
When the spring is stretched, it acquires potential energy. When released, the potential energy is converted into kinetic energy. If there is no friction nor any dissipative forces, all the potential energy will be converted into kinetic energy according to the energy conservation theorem.
The equation of elastic potential energy (EPE) is the following:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretching distance.
The elastic potential energy is maximum when the block has no kinetic energy, just before releasing it.
Then:
EPE = 1/2 · 40 N/m · (0.1 m)²
EPE = 0.2 J
The maximum potential energy of the system is 0.2 J
Explanation:
The given data is as follows.
Length of beam, (L) = 5.50 m
Weight of the beam, (
) = 332 N
Weight of the Suki, (
) = 505 N
After crossing the left support of the beam by the suki then at some overhang distance the beam starts o tip. And, this is the maximum distance we need to calculate. Therefore, at the left support we will set up the moment and equate it to zero.

= 0
x = 
= 
= 0.986 m
Hence, the suki can come (2 - 0.986) m = 1.014 from the end before the beam begins to tip.
Thus, we can conclude that suki can come 1.014 m close to the end before the beam begins to tip.
Answer:
Nitrogen, Oxygen, Argon.
Explanation:
The three (3) most abundant gases in the dry atmosphere are"
- Nitrogen
- Oxygen
- Argon
These are not the only components of dry air. Dry atmosphere is made up of:
- 78.09% Nitrogen;
- 20.95% Oxygen;
- 0.93% Argon;
- 0.04% Carbon dioxide;
- Other gases