Answer:
532 millimeters of mercury
Explanation:
In order to convert the pressure from atm to millimeters of mercury (mm Hg), we should remind the conversion factor between the two units:
1 atm = 760 mm Hg
Therefore, we can solve the problem by setting up the following proportion:

Solving for x, we find

Which best describes the transition from gas to liquid?
gas is @ higher energy state than liq. so the transition must remove energy. so ans is a. Energy must be removed because particles in liquid move more slowly.
Answer:
Circuit one will have more current than circuit two
Explanation:
I am assuming that you have to see which circuit has the greater current in this case. Well, this is the perfect example of Ohm's Law, which states the following -
V = IR,
where V = voltage / potential difference, I = current, and R = resistance
If one circuit has twice the voltage and half the resistance of the second circuit, as voltage is directly proportional to the resistance -
2V = I( 1 / 2R ),
4V = IR,
I = 4V / R
Whereas in the second circuit -
V = IR,
I = V / R
As you can note, voltage is directly proportional to the current ( I ) as well as the resistance. The only difference between the two formulas I = 4V / R, and I = V / R is the difference in the voltage. With the voltage being 4 times greater in the first circuit, and current is 4 times greater in the first circuit as well.
<u><em>Hence, circuit one will have more current than circuit two</em></u>
Solution :
Let
kg
m/s
Let
and
are the speeds of the disk
and
after the collision.
So applying conservation of momentum in the y-direction,





Therefore, the disk 2 have greater velocity and hence more kinetic energy after the collision.
Now applying conservation of momentum in the x-direction,




m/s
So, 
= 4.33 m/s
Therefore, speed of the disk 2 after collision is 4.33 m/s