Answer:
speed of car after collision, v2 =16.1 m/s and of the truck, v1 = 4.6 m/s
Explanation:
Given:
mass of truck M = 1370 kg
speed of truck = 12.0 m/s
mass of car m = 593 kg
collision is elastic therefore,
Applying law of momentum conservation we have
momentum before collision = momentum after collision
1370×12 + 0( initially car is at rest) = 1370×v1+ 593×v2 ....(i)
Also for a collision to be elastic,
velocity of approach = velocity of separation
12 -0 = v2-v1 ....(ii)
using (i) and (ii) we have
So speed of car after collision, v2 =16.1 m/s and of the truck, v1 = 4.6 m/s
Neither set of choices is correct.
If the distance is tripled, then the forces decrease to
1/9 Fg. and. 1/9 Fe.
Note. When the objects are charged, the gravitational force Fg can almost always be ignored, since Fe is like 10^40 greater when the quantities of mass and charge are similar.
Answer:
35 mph
Explanation:
The key of this problem lies in understanding the way that projectile motion works as we are told to neglect the height of the javelin thrower and wind resistance.
When the javelin is thown, its velocity will have two components: a x component and a y component. The only acceleration that will interact with the javelin after it was thown will be the gravety, which has a -y direction. This means that the x component of the velocity will remain constant, and only the y component will be affected, and can be described with the constant acceleration motion properties.
When an object that moves in constant acceleration motion, the time neccesary for it to desaccelerate from a velocity v to 0, will be the same to accelerate the object from 0 to v. And the distance that the object will travel in both desaceleration and acceleration will be exactly the same.
So, when the javelin its thrown, it willgo up until its velocity in the y component reaches 0. Then it will go down, and it will reach reach the ground in the same amount of time it took to go up and, therefore, with the same velocity.
I think metal, steel and copper.
Answer:
25 m/s
Explanation:
Centripetal acceleration is the square of the tangential velocity divided by the radius.
a = v² / r
15.625 m/s² = v² / (40 m)
v² = 625 m²/s²
v = 25 m/s
The speed of the car is 25 m/s.