The answer to this question would be: p+q+r = 2 + 17 + 39= 58
In this question, p q r is a prime number. Most of the prime number is an odd number. If p q r all odd number, it wouldn't be possible to get 73 since
odd x odd + odd= odd + odd = even
Since 73 is an odd number, it is clear that one of the p q r needs to be an even number.
There is only one odd prime number which is 2. If you put 2 in the r the result would be:
pq+2= 73
pq= 71
There will be no solution for pq since 71 is prime number. That mean 2 must be either p or q. Let say that 2 is p, then the equation would be: 2q + r= 73
The least possible value of p+q+r would be achieved by founding the highest q since its coefficient is 2 times r. Maximum q would be 73/2= 36.5 so you can try backward from that. Since q= 31, q=29, q=23 and q=19 wouldn't result in a prime number r, the least result would be q=17
r= 73-2q
r= 73- 2(17)
r= 73-34=39
p+q+r = 2 + 17 + 39= 58
That is not possible to make a triangle with a right angle and a acute angle because a acute triangle only has acute angles and a right triangle has a obtuse angle in it
Answer:
False
Step-by-step explanation:
There might be a chance I am wrong though sorr for the inconvinience
I believe it is the ratio 3 : 1.
<u>18 students chose the turkey sandwich</u>.
Since the class has a total of 24 students, we can deduce that <u>6 students chose the vegetarian sandwich</u>.
This gives us a ratio of 18 : 6.
When simplified, we get a ratio of 3 : 1.
Answer:
(3x+1)(x+3) is the factorised form for the expression.
Step-by-step explanation:
:3
x
2
+
10
x
+
3
We can Split the Middle Term of this expression to factorise it.
In this technique, if we have to factorise an expression like
a
x
2
+
b
x
+
c
, we need to think of 2 numbers such that:
N
1
⋅
N
2
=
a
⋅
c
=
3
⋅
3
=
9
and,
N
1
+
N
2
=
b
=
10
After trying out a few numbers we get:
N
1
=
9
and
N
2
=
1
9
⋅
1
=
9
, and
9
+
(
1
)
=
10
3
x
2
+
10
x
+
3
=
3
x
2
+
9
x
+
1
x
+
3
=
3
x
(
x
+
3
)
+
1
(
x
+
3
)
(
3
x
+
1
)
(
x
+
3
)
is the factorised form for the expression.
is the factorised form for the expression.