no, it not useless. we still learn Bohr's model in HS n dats almost 200 yr old! while there may be new models, previous one is good for explaining the basics. it is also useful to learn previous model n see how our understanding improves over time.
Answer:
the answer is at the BOTTOM OF THEIR QUESTION
Explanation:
IT IS CORRECT BTW
Answer:
The angle formed of the rope with the surface = 40°
Force applied = 125Newtons
The displacement covered by the box =25metres
W= FDcos theta
[125×40×cos(40°) ] Joules
= [ (3125×0.76604444311)]Joules
= 2393.88888472 joules(ans)
Hope it helps
The second ball traveled a greater distance when compared to the first ball because the second ball spent more time in motion.
The given parameters;
- time of fall of the first ball, t = 1 s
- time of fall of the second ball, t = 3 s
The distance traveled by each ball is calculated using the second equation of motion as shown below.
The distance traveled by the first ball is calculated as follows;

The distance traveled by the second ball is calculated as follows;

Thus, the second ball traveled a greater distance because it spent more time in motion.
Learn more here:brainly.com/question/5868480
Answer:
the gauge pressure at the upper face of the block is 116 Pa
Explanation:
Given the data in the question;
A cubical block of wood, 10.0 cm on a side.
height h = 1.50 cm = ( 1.50 × ( 1 / 100 ) ) m = 0.0150 m
density ρ = 790 kg/m³
Using expression for the gauged pressure;
p-p₀ = ρgh
where, p₀ is atmospheric pressure, ρ is the density of the substance, g is acceleration due to gravity and h is the depth of the fluid.
we know that, acceleration due to gravity g = 9.8 m/s²
so we substitute
p-p₀ = 790 kg/m³gh × 9.8 m/s² × 0.0150 m
= 116.13 ≈ 116 Pa
Therefore, the gauge pressure at the upper face of the block is 116 Pa