All of Dina's potential energy Ep is converted into kinetic energy Ek so Ep=Ek, where Ep=m*g*h and Ek=(1/2)*m*v². m is the mass of Dina, h is the height of ski slope, g=9.8 m/s² and v is the maximal velocity.
So we solve for v:
m*g*h=(1/2)*m*v², masses cancel out,
g*h=(1/2)*v², we multiply by 2,
2*g*h=v² and take the square root to get v
√(2*g*h)=v, we plug in the numbers and get:
v=9.9 m/s.
So Dina's maximum velocity on the bottom of the ski slope is v=9.9 m/s.
Answer: 0.516 ft/s
Explanation:
Given
Length of ladder L=20 ft
The speed at which the ladder moving away is v=2 ft/s
after 1 sec, the ladder is 5 ft away from the wall
So, the other end of the ladder is at

Also, at any instant t

differentiate w.r.t.

Answer:

Explanation:
If we have a periodic wave we need to satisfy the following basic relationship:

From the last formula we see that the velocity is proportional fo the frequency.
For this case we have the following info given by the problem:

We know that the frequency is the reciprocal of the period so we have this formula:

And if we replace we got:

Now since we have the value for the wavelength we can find the velocity like this:

And if we convert this into cm/s we got:

Answer:
x=0.53
Explanation:
Using Gauss law the field is uniform so
E=ζ/ε
Charge densities ⇒ζ=1.
ε=8.85

Force of charge is


So finally knowing the acceleration and the time the distance can be find using equation of uniform motion

A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs.