Answer:
Explanation:
Just like your body converts food into energy, a car engine converts gas into motion. ... The process of converting gasoline into motion is called "internal combustion." Internal combustion engines use small, controlled explosions to generate the power needed to move your car all the places it needs to go.
It is a completely false statement that in <span>any energy transformation, there is always some energy that gets wasted as non-useful heat. The correct option among the two options that are given in the question is the second option. I hope that this is the answer that has actually come to your desired help.</span>
Answer:
Explanation:
We shall solve this problem on the basis of pinciple that water is incompressible so volume of flow will be equal at every point .
rate of volume flow of one stream
= cross sectional area x velocity
= 8.4 x 3.5 x 2.2 = 64.68 m³ /s
rate of volume flow of other stream
= 6.6 x 3.6 x 2.7
= 64.15 m³ /s
rate of volume flow of rive , if d be its depth
= 11.2 x d x 2.8
= 31.36 d
volume flow of river = Total of volume flow rate of two streams
31.36 d = 64.15 + 64.68
31.36 d = 128.83
d = 4.10 m /s .
Explanation:
By using v=( f )x( lambda )
v= 45 s^-1 x 3 m
Therefore v = 135 ms^-1
Answer:
The answer is "
".
Explanation:
Cavity and benzene should be extended in equal quantities.
![\to 1.18 \times 10^{-3}\times (1+ \Delta T \times 0.000051) = 1.1\times 10^{-3} \times (1+ \Delta T \times 0.00124)\\\\\to (\frac{1.18}{1.1})\times (1+ \Delta T \times 0.000051) = 1+ \Delta T \times 0.00124\\\\ \to 1.072\times (1+ \Delta T \times 0.000051) = 1+ \Delta T \times 0.00124\\\\ \to 1.072+ \Delta T \times 0.000054672 = 1+ \Delta T \times 0.00124\\\\ \to 1.072+ \Delta T \times 0.000054672 - 1- \Delta T \times 0.00124=0\\\\](https://tex.z-dn.net/?f=%5Cto%201.18%20%5Ctimes%2010%5E%7B-3%7D%5Ctimes%20%281%2B%20%5CDelta%20T%20%5Ctimes%200.000051%29%20%3D%201.1%5Ctimes%2010%5E%7B-3%7D%20%5Ctimes%20%281%2B%20%5CDelta%20T%20%5Ctimes%200.00124%29%5C%5C%5C%5C%5Cto%20%20%28%5Cfrac%7B1.18%7D%7B1.1%7D%29%5Ctimes%20%281%2B%20%5CDelta%20T%20%5Ctimes%200.000051%29%20%3D%201%2B%20%5CDelta%20T%20%5Ctimes%200.00124%5C%5C%5C%5C%20%5Cto%201.072%5Ctimes%20%281%2B%20%5CDelta%20T%20%5Ctimes%200.000051%29%20%3D%201%2B%20%5CDelta%20T%20%5Ctimes%200.00124%5C%5C%5C%5C%20%5Cto%201.072%2B%20%5CDelta%20T%20%5Ctimes%200.000054672%20%3D%201%2B%20%5CDelta%20T%20%5Ctimes%200.00124%5C%5C%5C%5C%20%5Cto%201.072%2B%20%5CDelta%20T%20%5Ctimes%200.000054672%20-%201-%20%5CDelta%20T%20%5Ctimes%200.00124%3D0%5C%5C%5C%5C)
![\to 0.072+ \Delta T \times 0.000054672 - \Delta T \times 0.00124=0\\\\ \to 0.072+ \Delta T ( 0.000054672 -0.00124)=0\\\\ \to \Delta T ( 0.000054672 -0.00124)= -0.072\\\\ \to \Delta T = -\frac{0.072}{( 0.000054672 -0.00124)}\\\\ \to \Delta T = -\frac{0.072}{-0.001185328 }\\](https://tex.z-dn.net/?f=%5Cto%200.072%2B%20%5CDelta%20T%20%5Ctimes%200.000054672%20-%20%5CDelta%20T%20%5Ctimes%200.00124%3D0%5C%5C%5C%5C%20%5Cto%200.072%2B%20%5CDelta%20T%20%28%200.000054672%20-0.00124%29%3D0%5C%5C%5C%5C%20%5Cto%20%5CDelta%20T%20%28%200.000054672%20-0.00124%29%3D%20-0.072%5C%5C%5C%5C%20%5Cto%20%5CDelta%20T%20%3D%20-%5Cfrac%7B0.072%7D%7B%28%200.000054672%20-0.00124%29%7D%5C%5C%5C%5C%20%5Cto%20%5CDelta%20T%20%3D%20-%5Cfrac%7B0.072%7D%7B-0.001185328%20%7D%5C%5C)
![\to \Delta T = \frac{0.072}{0.001185328 }\\\\ \to \Delta T = 60.74^{\circ}\\](https://tex.z-dn.net/?f=%5Cto%20%5CDelta%20T%20%3D%20%5Cfrac%7B0.072%7D%7B0.001185328%20%7D%5C%5C%5C%5C%20%5Cto%20%5CDelta%20T%20%3D%2060.74%5E%7B%5Ccirc%7D%5C%5C)