Voltage = current(I) * resistance (R)
V = 18
R = 6
18 = I * 6
I = 18/6 = 3 Amps or D
Answer:
a) v = 2,9992 10⁸ m / s
, b) Eo = 375 V / m
, B = 1.25 10⁻⁶ T,
c) λ = 3,157 10⁻⁷ m, f = 9.50 10¹⁴ Hz
, T = 1.05 10⁻¹⁵ s
, UV
Explanation:
In this problem they give us the equation of the traveling wave
E = 375 cos [1.99 10⁷ x + 5.97 10¹⁵ t]
a) what the wave velocity
all waves must meet
v = λ f
In this case, because of an electromagnetic wave, the speed must be the speed of light.
k = 2π / λ
λ = 2π / k
λ = 2π / 1.99 10⁷
λ = 3,157 10⁻⁷ m
w = 2π f
f = w / 2 π
f = 5.97 10¹⁵ / 2π
f = 9.50 10¹⁴ Hz
the wave speed is
v = 3,157 10⁻⁷ 9.50 10¹⁴
v = 2,9992 10⁸ m / s
b) The electric field is
Eo = 375 V / m
to find the magnetic field we use
E / B = c
B = E / c
B = 375 / 2,9992 10⁸
B = 1.25 10⁻⁶ T
c) The period is
T = 1 / f
T = 1 / 9.50 10¹⁴
T = 1.05 10⁻¹⁵ s
the wavelength value is
λ = 3,157 10-7 m (109 nm / 1m) = 315.7 nm
this wavelength corresponds to the ultraviolet
Answer: A (Ft)
Explanation: The impulse experienced by the object equals the change in momentum of the object. In equation form, F • t = m • Δ v
Answer: the options to the questions are
a. 1.0 moles of N2
b.0.5 moles of New
c.0.2 moles of CO2
d.2 moles of He
Answer D
Explanation:
The average molecular speed v of gas is given by =√(8RT,/πM)
From the equation it can be seen that substance with lowest molar mass has the highest velocity has He is the answer
Answer:
the range or the ball is 48.81 m
Explanation:
given;
Nicole throws a ball at 25 m/s at an angle of 60 degrees abound the horizontal.
find:
What is the range of the ball?
solution:
let Ф = 25°
Vo = 25 m/s
<u>consider x-motion using time of fight: x = Vox * t</u>
where x = R = range
t =<u> 2 Voy </u>
g
R =<u> Vo² sin (2Ф)</u>
g
plugin values into the formula:
R = <u>(25)² sin (2*25) </u>
9.81
R = 48.81 m
therefore, the range or the ball is 48.81 m