Answer:
v = -v₀ / 2
Explanation:
For this exercise let's use kinematics relations.
Let's use the initial conditions to find the acceleration of the electron
v² = v₀² - 2a y
when the initial velocity is vo it reaches just the negative plate so v = 0
a = v₀² / 2y
now they tell us that the initial velocity is half
v’² = v₀’² - 2 a y’
v₀ ’= v₀ / 2
at the point where turn v = 0
0 = v₀² /4 - 2 a y '
v₀² /4 = 2 (v₀² / 2y) y’
y = 4 y'
y ’= y / 4
We can see that when the velocity is half, advance only ¼ of the distance between the plates, now let's calculate the velocity if it leaves this position with zero velocity.
v² = v₀² -2a y’
v² = 0 - 2 (v₀² / 2y) y / 4
v² = -v₀² / 4
v = -v₀ / 2
We can see that as the system has no friction, the arrival speed is the same as the exit speed, but with the opposite direction.
If "0.3 minute" is correct, then it's 9,543,272 Joules.
If it's supposed to say "0.3 SECOND", then the KE is 2,651 Joules.
Answer:
he can explore other types of physical activity
Explanation:
lifting weights and paddling will help but running could also help
Answer:
4.5 W
Explanation:
Applying,
P = V²/(R₁+R₂).................. Equation 1
Where P = Power, V = Voltage, R₁ and R₂ = values of the two resistor.
From the question,
Given: V = 9.00 V, R₁ = 7.00 Ω, R₂ = 11.00 Ω
Substitute these values into equation 1
P = 9²/(7+11)
P = 81/(18)
P = 4.5 Watt.
Hence the power dessipated by the two resistors is 4.5 watt