The resistance of the lamp plugged in to a standard wall outlet with a current of 0.5 amps is 240 Ω (ohms)
Explanation:
In the United States Of America the standard voltage is 120 v and their frequency is 60 Hz
Standard wall outlet voltage is 120 V
The current in the lamp is 0.5 ampere
Resistance (R) = V/ I
= 120/0.5
= 240Ω (ohms)
Thus the resistance of the lamp plugged in to a standard wall outlet with a current of 0.5 amps is 240 Ω (ohms).
<span>Acceleration is the change in velocity divided by time.
We can find acceleration a, by the following formula
a=v-u/t
where,
v is the final velocity (in this question v=8.0 m/s)
u is the initial velocity (since the hamster starts from rest, u=0)
t is the time taken (i,e 3.0 second)
now by applying the formula we have,
a = 8.0 - 0 / 3
= 8 / 3
= 2.65 m/s</span>²<span>
The acceleration is 2.65 meters per second squared</span>
Explanation:
V=u+at
where,
v=final speed
u=initial speed,(starting speed)
a=acceleration
t=time
- v=u+at = 6=2+a*2
6=2+2a
2a=6-2
2a=4
a=4/2 = 2
a =2
2. to find time taken
v=u+at
25=5*2t
2t=25-5
2t=20
t=20/2
t=10sec
3. finding final speed
v=u+at
v=4+10*2
=4+20
v=24m/sec
5.v=u+at
=5+8*10
=5+80
V=85m/sev
6. v=u+at
8=u+4*2
8=u+8
U=8/8
u=1
these are your missing values
Answer: Hello the missing piece of your question is attached
question : Determine mass of steam that has entered ( in kg )
answer : 0.206 kg
Explanation:
V1 = 0.1 m^3 ,
v' = V1 / m1 = 0.1 / 0.6 = 0.167 m^3/kg
V2 = 0.2 m^3
using the steam tables
at ; P = 1000 kPa, v' = 0.167 m^3/kg
U1 = 2321 KJ/kg
at ; P = 1000 kPa , T2 = 280°C
v'2= 0.2481 m^3kg
U2 = 2760.6
at ; P = 5MPa , T = 500°C
h1 = 3434.7 KJ/Kg
calculate final mass ( m2 )
M2 = V2 / v'2
= 0.2 / 0.2481 = 0.806 kg
therefore the mass added = m2 - m1
= 0.806 - 0.6 = 0.206 kg