Answer:
Tension= 21,900N
Components of Normal force
Fnx= 17900N
Fny= 22700N
FN= 28900N
Explanation:
Tension in the cable is calculated by:
Etorque= -FBcostheta(1/2L)+FT(3/4L)-FWcostheta(L)= I&=0 static equilibrium
FTorque(3/4L)= FBcostheta(1/2L)+ FWcostheta(L)
Ftorque=(Fcostheta(1/2L)+FWcosL)/(3/4L)
Ftorque= 2/3FBcostheta+ 4/3FWcostheta
Ftorque=2/3(1350)(9.81)cos55° + 2/3(2250)(9.81)cos 55°
Ftorque= 21900N
b) components of Normal force
Efx=FNx-FTcos(90-theta)=0 static equilibrium
Fnx=21900cos(90-55)=17900N
Fy=FNy+ FTsin(90-theta)-FB-FW=0
FNy= -FTsin(90-55)+FB+FW
FNy= -21900sin(35)+(1350+2250)×9.81=22700N
The Normal force
FN=sqrt(17900^2+22700^2)
FN= 28.900N
She does 200J .
We know she uses 20N of force and 10m is the distance. We multiply both numbers and we are given our answer of 200J. Hope this was helpful. :)
Answer:
mass- the amount of matter in an object
balance- tool used to measure mass
scale- a tool used to measure weight
weight- the downward pull on an object due to gravity
Answer:
a) Temperatura, b) Temperature, c) Constant
, d) None of these
, e) Gibbs enthalpy and free energy (G)
Explanation:
a) the expression for ideal gases is PV = nRT
Temperature
b) The internal energy is E = K T
Temperature
c) S = ΔQ/T
In an isolated system ΔQ is zero, entropy is constant
Constant
d) all parameters change when changing status
None of these
e) Gibbs enthalpy and free energy
See the graph in attachment
Explanation:
In this problem we have to draw a velocity-time graph for an object travelling initially at -3 m/s, then slowing down and turning around.
In the graph, we see that the initial velocity at time t = 0 is

and it is negative, so below the x-axis.
Later, the object slows down: this means that the magnitude of its velocity increases, therefore (since the velocity is negative) the curve must go upward, approaching and reaching the x-axis (which corresponds to zero velocity).
After that, the object's velocity keep increasing, but now it is positive: this means that the object is travelling in a direction opposite to the initial direction, so it has turned around.
Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly