Answer:
The energy are traveled through the sun in two ways that are:
- By the radiation
- By the convection
As, the energy are first traveled outward from the core of the sun and then it get entered in the zone of the radiation and this zone is known as radiative zone in the surface of the sun.In the radiation process some amount of the hydrogen particle are combined and then releases the energy. And the convection is the process of conversion of one form of energy to another form.
The trampoline one would be for the elastic answer, the chemical one would be for the chemical answer, and the last one would be for the gravitational one :)
The car’s momentum after 4.21s is 24617.4 kgm/s
<h3>
Newton's Second Law of Motion.</h3>
Newton's second law state that, the rate of change of momentum, is directly proportional to the applied force.
Given that a 1200 kg car passes traffic light at a velocity of 10.2 m/s to the north and accelerates at a rate of 2.45 m/s^2. To calculate the car’s momentum after 4.21 s, Let us first list all the parameters involved.
- Acceleration a = 2.45 m/s²
From Newton's second law,
F = (mv - mu) / t
ma = (mv - mu) / t
Substitute all the parameters into the formula above.
1200 × 2.45 = ( mv - 1200 × 10.2 ) / 4.21
2940 = ( mv - 12240 ) / 4.21
Cross multiply
12377.4 = mv - 12240
Make mv the subject of the formula
mv = 12377.4 + 12240
mv = 24617.4 kgm/s
Therefore, the car’s momentum after 4.21s is 24617.4 kgm/s
Learn more about Momentum here: brainly.com/question/25121535
#SPJ1
<span>There is an low cost and quickest alternative available for adaptive optics. Name of this technique is wavefront coding. The numerical analysis pretends to show the robustness of the technique under changes in pupil diameter and wavefront shape including intersubject and intrasubject variability, using always the same restoration filter or image decoder .Using this technique it is possible to obtain high resolution images under different ocular aberrations and pupil diameters with the same decoder, opening the possibility of real time high resolution images.</span>