Answer:
2.5 × 10⁴ mi/h = 1.1 × 10⁴ m/s
Explanation:
Hi there!
We have the following equivalencies:
1 mile = 1609 m
1 hour = 3600 s
Then to convert miles to meters, we can multiply the given quantity in miles by ( 1609 m/ 1 mile) and we will obtain the same quantity in meters. In the same way, if we want to convert hours into seconds, we can multiply the given quantity in hours by (3600 s/ 1 hour) and we will obtain seconds.
Let´s convert miles per hour into m/s:
= 1.1 × 10⁴ m/s (notice how the units mi and h cancel)
Answer:t=0.3253 s
Explanation:
Given
speed of balloon is 
speed of camera 
Initial separation between camera and balloon is 
Suppose after t sec of throw camera reach balloon then,
distance travel by balloon is


and distance travel by camera to reach balloon is


Now






There are two times when camera reaches the same level as balloon and the smaller time is associated with with the first one .
(b)When passenger catches the camera time is 
velocity is given by



and position of camera is same as of balloon so
Position is 

Answer:
When the voltage is at a maximum positive value, the the current is at a value that is maximum and positive
Explanation:
We know that the relation between the Voltage and the current is given using the Ohm's law, which states that the voltage (V) is directly proportional to the current (I)
Mathematically,
V ∝ I
Hence,
When the voltage is at a maximum positive value, the the current is at a value that is maximum and positive
Answer:
a) The magnitude of the magnetic field = 7.1 mT
b) The direction of the magnetic field is the +z direction.
Explanation:
The force, F on a current carrying wire of current I, and length, L, that passes through a magnetic field B at an angle θ to the flow of current is given by
F = (B)(I)(L) sin θ
F/L = (B)(I) sin θ
For this question,
(F/L) = 0.113 N/m
B = ?
I = 16.0 A
θ = 90°
0.113 = B × 16 × sin 90°
B = 0.113/16 = 0.0071 T = 7.1 mT
b) The direction of the magnetic field will be found using the right hand rule.
The right hand rule uses the first three fingers on the right hand (the thumb, the pointing finger and the middle finger) and it predicts correctly that for current carrying wires, the thumb is in the direction the wire is pushed (direction of the force; -y direction), the pointing finger is in the direction the current is flowing (+x direction), and the middle finger is in the direction of the magnetic field (hence, +z direction).