1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga2289 [7]
3 years ago
9

Help me with this question plz! The equation t=0.07c represents the tax t, based on the cost c, of an item. Which part of the eq

uation represents the constant of proportionality?
A: t
B: 0.07
C: c
D: 7

Help fast!! 15 points!!
Mathematics
1 answer:
mario62 [17]3 years ago
8 0
Y=kx
k=constant
given
t=0.07c
the constant is 0.07

answer is B
You might be interested in
A) Compute the sum
avanturin [10]
A)

To calculate this sum, we could use trigonometric identity:

\arcsin(x)-\arcsin(y)=\arcsin\left(x\sqrt{1-y^2}-y\sqrt{1-x^2}\right)

We have:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k+1-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{(k+1)^2-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\dfrac{\sqrt{(k+1)^2-1}}{\sqrt{(k+1)^2}}-\dfrac{1}{k+1}\cdot\dfrac{\sqrt{k^2-1}}{\sqrt{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{\dfrac{(k+1)&^2-1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{\dfrac{k^2-1}{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\dfrac{1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{1-\dfrac{1}{k^2}}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\left(\dfrac{1}{k+1}\right)^2}-\dfrac{1}{k+1}\cdot\sqrt{1-\left(\dfrac{1}{k}\right)^2}\right]=\\\\\\=
\sum\limits_{k=1}^n\left[\arcsin\left(\dfrac{1}{k}\right)-\arcsin\left(\dfrac{1}{k+1}\right)\right]=\\\\\\

=\bigg[\arcsin(1)-\arcsin\left(\frac{1}{2}\right)\bigg]+\bigg[\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)\bigg]+\\\\\\+
\bigg[\arcsin\left(\frac{1}{3}\right)-\arcsin\left(\frac{1}{4}\right)\bigg]+\dots+
\bigg[\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)\bigg]=\\\\\\

=\arcsin(1)-\arcsin\left(\frac{1}{2}\right)+\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)+\arcsin\left(\frac{1}{3}\right)-\\\\\\-\arcsin\left(\frac{1}{4}\right)+\dots+\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)=\\\\\\=
\arcsin(1)-\arcsin\left(\frac{1}{n+1}\right)=\dfrac{\pi}{2}-\arcsin\left(\frac{1}{n+1}\right)

So the answer is:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)}

B)

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\Bigg(\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)\Bigg)=\dfrac{\pi}{2}-\lim\limits_{n\to\infty}\arcsin\left(\dfrac{1}{n+1}\right)=\\\\\\=
\Bigg\{\dfrac{1}{n+1}\xrightarrow{n\to\infty}0\Bigg\}=\dfrac{\pi}{2}-\arcsin(0)=\dfrac{\pi}{2}-0=\dfrac{\pi}{2}

So we prove that:

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}
7 0
3 years ago
Find the volume of this cylinder 9cm 20cm give answer to 1 decimal place
mojhsa [17]

Answer:

the answer is 5,087 or 5,086.8

7 0
3 years ago
Read 2 more answers
CAN SOMEONE HELP ME PLSS IM FAILING AND I RLLY NEED HELP HELP ASAP HELP MATH MATH MATH HELPPPPPPPPPP
Leno4ka [110]

Answer:

Hello if I know the answers to your math questions I'll answer if there already posted I'll check your profile if not please post them thank you!

4 0
3 years ago
6% of x = 600. Find the value of x.​
posledela

Answer:

x=36

I hope this is correct and I hope that it helps

7 0
3 years ago
Read 2 more answers
mary wants to fill in a cylinder vase. the flower store told her to fill the vase 4/5 of the way for the flowers to last the lon
Goshia [24]

Volume is a three-dimensional scalar quantity. The volume of the water that Marry should pour into the vase is 241.28 cubic inches.

<h3>What is volume?</h3>

A volume is a scalar number that expresses the amount of three-dimensional space enclosed by a closed surface.

Given the radius of the flower vase is 4 inches, while the height of the vase is 6 inches, therefore, the total volume of the vase is,

Volume = πR²×H = π× 4²×6 = 301.6 in³

Since the volume of the vase is 301.6 in³, but the store has told her to fill the vase 4/5 of its capacity, therefore, the volume of water Marry should pour is,

Volume of water = (4/5) × 301.6 in³ = 241.28 cubic inches

Hence, the volume of the water that Marry should pour into the vase is 241.28 cubic inches.

Learn more about Volume:

brainly.com/question/13338592

#SPJ1

4 0
2 years ago
Other questions:
  • 2.What is the correct equation of the line shown below ?
    13·1 answer
  • 6. A cashier has 25 coins consisting of nickels, dimes, and quarters with a value of $4.90. If the
    10·1 answer
  • Which list shows all the factors of 36?
    13·2 answers
  • Add these measurements, using significant digit rules 44.2 cm + 0.123 = ___ cm
    10·2 answers
  • What is the total sum of x=56y
    8·1 answer
  • 2 (x − 3) = 5x − 3 (x + 2)
    6·2 answers
  • The time I spend waiting for the bus on any given day has a distribution with mean 4 min- utes and variance off 0.5 minutes. Wha
    12·1 answer
  • Tara has 39 red pens she has to get 125 pens how many more pens does she need?
    15·2 answers
  • Question 3
    8·2 answers
  • f f(x)=2x f ( x ) = 2 x and g(x)=x2+3 g ( x ) = x 2 + 3 , find (g ∘ f)(x) ( g ∘ f ) ( x ) . Question 2 options: 2x2+3 2 x 2 + 3
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!