Answer:
Y is a 3-chloro-3-methylpentane.
The structure is shown in the figure attached.
Explanation:
The radical chlorination of 3-methylpentane can lead to a tertiary substituted carbon (Y) and to a secondary one (X).
The E2 elimination mechanism, as shown in the figure, will happen with a simulyaneous attack from the base and elimination of the chlorine. This means that primary and secondary substracts undergo the E2 mechanism faster than tertiary substracts.
1)Identify the atoms that are participating in a covalent bond.
2)Draw each atom by using its element symbol. The number of valence electrons is shown by placing up to two dots on each side of the element symbol, with each dot representing a single valence electron.
3)Predict the number of covalent bonds each atom will make using the octet rule.
4)Draw the bonding atoms next to each other, showing a single covalent bond as either a pair of dots or a line representing a shared valence electron pair. If the molecule forms a double or triple bond, use two or three lines to represent the shared electron pairs, respectively.
Hey there!:
density = 3.51 g/cm³
Volume = 0.0270 cm³
Therefore:
D = m / V
3.51 = m / 0.0270
m = 3.51 * 0.0270
m = 0.09477 g
(ANS1)— P4 + 5O2 ---> 2P2O5
(ANS2)— C3H8 + 5O2---> 3CO2 + 4H20
(ANS3)— Ca2Si + 4Cl2 ---> 2CaCl2 + SiCl4