1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stich3 [128]
3 years ago
10

Steam at 4 MPa and 400C enters a nozzle steadily with a velocity of 60 m/s, and it leaves at 2 MPa and 300C. The inlet area of

the nozzle is 50 cm2, and heatis being lost at a rate of 75 kJ/s. Determine(a)the mass flow rate of the steam,(b)the exit velocity of the steam, and(c)the exit area of the nozzle.
Physics
1 answer:
frez [133]3 years ago
4 0

Answer:

(A) 4.09 kg/s

(B) 589.9 m/s

(C)   0.0008707 m^{3} =  8.71 cm^{2}

Explanation:

inlet pressure of steam (P1) = 4 MPa

inlet temperature of steam (T1) = 400 degree celcius

inlet velocity (V1) = 60 m/s

outlet pressure (P2) = 2 MPa

outlet temperature (T2) = 300 degree celcius

inlet area (A1) = 50 cm^{2} = 0.005 m^{2}

rate of heat loss (Q) = 75 kJ/s

(A) mass flow rate (m) = \frac{A1 x V1}{α1}

where the initial specific volume (α1) for the given temperature and pressure is gotten from tables A-6 = 0.07343 m^3/kg

m = \frac{0.005 x 60}{0.07343}

m = 4.09 kg/s

(B) we can get the outlet velocity using the energy balance equation

  E in = E out

   m(h1 + \frac{(V1)^{2}}{2}) =  m(h2 + \frac{(V2)^{2}}{2})

V2 = \sqrt{2(h1 - h2) +(V1)^{2} - 2\frac{Q}{m}

where h1 and h2 are the enthalpies and are gotten from table A-6

V2 = \sqrt{2 x 1000 x(3214.5 - 3024.2) +(60)^{2} - 2\frac{75 x 1000}{4.09}

V2 = 589.9 m/s  

(C) the outlet area is gotten from mass flow rate (m) = \frac{A2 x V2}{α}

  A2 = (α2 x m) / V2

where the initial specific volume (α2) for the given temperature and pressure is gotten from tables A-6 = 0.12552 m^3/kg

A2 = (0.12552 x 4.09) / 589.5 = 0.0008707 m^{3} =  8.71 cm^{2}

You might be interested in
Two 1.9 kg masses are 1.1 m apart (center to center) on a frictionless table. Each has + 9.6 μC of charge.
Anni [7]

Answer:

F= 0.6 N

Explanation:

Fe(electrical force)=k q1q2/r^2

    k=9*10^9\\q1=-9.6 *10^-6 C\\q2= -9.6*10^-6 C\\r= 1.1m

So,    

        F=\frac{9*10^9*-9.6 *10^-6 C* -9.6*10^-6 C}{1.1^2}

         F= 0.6 N

5 0
3 years ago
When heat is converted into another form of energy, the total amount of energy is constant. Which law best illustrates this stat
deff fn [24]
The law of conservation of energy states that in a closed or isolated system, the amount of energy remains constant because energy can neither be created or destroyed. It can only be transferred from one form into another. This applies to all forms of energy. 
8 0
3 years ago
At what height h above the ground does the projectile have a speed of 0.5v?
maw [93]

Answer:

h=\dfrac{3v^2}{8g}

Explanation:

It is given that,

Speed of the projectile is 0.5 v. Let h is the height above the ground. Using the first equation of motion to find it.

v=u+at

v=u-gt

Initial speed of the projectile is v and final speed is 0.5 v.

0.5v=v-gt

t=\dfrac{v}{2g}

g is the acceleration due to gravity

Let h is the height above the ground. Using the second equation of motion as :

h=vt-\dfrac{1}{2}gt^2

h=v\dfrac{v}{2g}-\dfrac{1}{2}g(\dfrac{v}{2g})^2

h=\dfrac{3v^2}{8g}

So, the height of the projectile above the ground is \dfrac{3v^2}{8g}. Hence, this is the required solution.

6 0
3 years ago
Light waves can be easily blocked but ______ waves pass through all substances? ( fill in the blank)
IRINA_888 [86]
Compressional waves can travel through all states of matter.
8 0
3 years ago
A piston-cylinder device initially contains 0.08 m3 of nitrogen gas at 150 kPa and 200°C. The nitrogen is now expanded to a pres
Lemur [1.5K]

Answer:

V_2 = 0.125 m^3

Work done =  = 5 kJ

Explanation:

Given data:

volume of nitrogen v_1 = 0.08 m^3

P_1 = 150 kPa

T_1 = 200 degree celcius = 473 Kelvin

P_2 = 80 kPa

Polytropic exponent n = 1.4

\frac{T_2}{T_1} = [\frac{P_2}{P_1}]^{\frac{n-1}{n}

putting all value

\frac{T_2}{473} = [\frac{80}{150}]^{\frac{1.4-1}{1.4}

\frac{T_2} = 395.23 K = 122.08 DEGREE \ CELCIUS

polytropic process is given as

P_1 V_1^n = P_2 V_2^n

150\times 0.08^{1.4} = 80 \times V_2^{1.4}

V_2 = 0.125 m^3

work done = \frac{P_1 V_1 -P_2 V_2}{n-1}

= \frac{150 \times 0.8 - 80 \times 0.125}{1.4-1}

                  = 5 kJ

4 0
3 years ago
Other questions:
  • Which best compares the gravitational force and the strong force ?
    14·2 answers
  • What is the direction of the net force that acts on an object undergoing uniform circular motion?
    11·2 answers
  • What are the characteristics and phases of the moon
    6·1 answer
  • Which of the following is a unit of volume of solids?
    13·2 answers
  • Which of the following best characterizes the field of physics
    15·1 answer
  • What does resonance result in? Quieter sounds, frequency, amplitude
    9·2 answers
  • If the force of gravity suddenly stopped acting on the planets, they would
    15·2 answers
  • Volcanic mountains can only form on the ocean floor?<br><br> True<br><br> False
    6·1 answer
  • When a solid compound dissolves in water,
    10·1 answer
  • A force of 200N is being applied over an area measuring 0.75m^2
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!