Answer:
Part A:
to two significant figures
Part B:
to two significant figures
Part C:
to two significant figures
Explanation:
Given that :
mass of the hydrogen = 0.30 g
the molar mass of hydrogen gas molecule = 2 g/mol
we all know that:
number of moles = mass/molar mass
number of moles = 0.30 g /2 g/mol
number of moles = 0.15 mol
For low temperature between the range of 50 K to 100 K, the specific heat at constant volume for a diatomic gas molecule = 
For Part A:




to two significant figures
Part B. For hot temperature, 




to two significant figures
Part C. For an extremely hot temperature, 




to two significant figures
Answer:
E = 58.7 V/m
Explanation:
As we know that flux linked with the coil is given as

here we have


now we have

now the induced EMF is rate of change in magnetic flux

now for induced electric field in the coil is linked with the EMF as





Answer:
The rate of heat conduction through the layer of still air is 517.4 W
Explanation:
Given:
Thickness of the still air layer (L) = 1 mm
Area of the still air = 1 m
Temperature of the still air ( T) = 20°C
Thermal conductivity of still air (K) at 20°C = 25.87mW/mK
Rate of heat conduction (Q) = ?
To determine the rate of heat conduction through the still air, we apply the formula below.


Q = 517.4 W
Therefore, the rate of heat conduction through the layer of still air is 517.4 W