<span>To answer this problem, we use balancing of forces: x and y components to determine the tension of the rope.
First, the vertical component of tension (Tsin theta) is equal to the weight of the object.
T * sin θ = mg =</span> 1.55 * 9.81 <span>
T * sin θ = 15.2055
Second, the horizontal component of tension (t cos theta) is equal to the force of the wind.
T * cos θ = 13.3
Tan θ = sin </span>θ / cos θ = 15.2055/13.3 = 1.143
we can find θ that is equal to 48.82.
T then is equal to 20.20 N
family 16 cause i said so XD
B. velocity at position x, velocity at position x=0, position x, and the original position
In the equation
=
+2 a x (x - x₀)
= velocity at position "x"
= velocity at position "x = 0 "
x = final position
= initial position of the object at the start of the motion
Answer:
Kinetic Energy
Explanation:
Kinetic energy is the energy an object has because of its motion. If we want to accelerate an object, then we must apply a force. ... Kinetic energy can be transferred between objects and transformed into other kinds of energy. For example, a flying squirrel might collide with a stationary chipmunk.