Rectangle ABCDABCDA, B, C, D is graphed in the coordinate plane. The following are the vertices of the rectangle: A(2, 1)A(2,1)A
, left parenthesis, 2, comma, 1, right parenthesis, B(5, 1)B(5,1)B, left parenthesis, 5, comma, 1, right parenthesis, C(5, 6)C(5,6)C, left parenthesis, 5, comma, 6, right parenthesis, and D(2, 6)D(2,6)D, left parenthesis, 2, comma, 6, right parenthesis. Given these coordinates, what is the length of side ABABA, B of this rectangle?
The volume of the cylinder is given by: V = pi * r ^ 2 * h For h = 12cm: V1 = pi * ((21) ^ 2) * (12) V1 = 16625.30832 cm ^ 3 For h = 11.9cm: V2 = pi * ((21) ^ 2) * (11.9) V2 = 16486.76409 cm ^ 3 The change in volume is given by: V1-V2 = 16625.30832-16486.76409 V1-V2 = 138.54423 cm ^ 3 Answer: the change in the volume is: V1-V2 = 138.54423 cm ^ 3