Answer:
the pressure in the pipe in the case when there is no net force on the car is 81,726 N/m^2
Explanation:
a. The computation of the pressure in the pipe in the case when there is no net force on the car is shown below
As we know that
Pressure = F ÷ area
Also
F = mg
Now
= (1500 × 9.8) ÷π (0.24)^2
= 81,726 N/m^2
Hence, the pressure in the pipe in the case when there is no net force on the car is 81,726 N/m^2
A stable isotope has just<em> the right number of neutrons for the number of protons </em>(the <em>n:p ratio</em>) to hold the nucleus together against the repulsions of the protons.
A radioactive isotope has either too few or too many neutrons for the nucleus to be stable,
The nucleus will then emit <em>alpha, beta, or gamma radiation</em> in an attempt to become more stable.
Given :
Number of molecules of
.
To Find :
How many moles are in given number of molecules.
Solution :
We know, in 1 moles of any element/compound contains
at atoms/molecules.
So, number of moles in
molecules are :

Therefore, number of moles are 8.97 .
Answer:
a)
b)
Explanation:
a) The reaction:

The free-energy expression:

![E=E_{red}-E_{ox]](https://tex.z-dn.net/?f=E%3DE_%7Bred%7D-E_%7Box%5D)
The element wich is reduced is the Fe and the one that oxidates is the Mg:

The electrons transfered (n) in this reaction are 2, so:


b) If you have values of enthalpy and enthropy you can calculate the free-energy by:

with T in Kelvin


The correct response is A. Only the Fe is unbalanced.