Answer:
<em>Gravity</em><em>.</em><em> </em><em>The</em><em> </em><em>weight-force</em><em> </em><em>or</em><em> </em><em>weight</em><em> </em><em>of</em><em> </em><em>an</em><em> </em><em>object</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>force</em><em> </em><em>because</em><em> </em><em>of</em><em> </em><em>Gravity</em><em>,</em><em> </em><em>which</em><em> </em><em>acts</em><em> </em><em>on</em><em> </em><em>the</em><em> </em><em>object</em><em> </em><em>attracting</em><em> </em><em>it</em><em> </em><em>towards</em><em> </em><em>the</em><em> </em><em>centre</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>earth</em><em>.</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>helps</em><em>,</em><em> </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>x</em>
To solve this we assume
that the gas inside the balloon is an ideal gas. Then, we can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 =284.15 x 2.50 / 303.15
<span>V2 = 2.34 L</span>
<span>The answer is: ultraviolet
The energy (E) of a photon is directly proportional to its frequency f, by Planck's
formula: E = hf, where h is Planck's constant (6.625 * 10**-34 joule-second).
The frequency is inversely proportional to the wavelength w by: f = c/w, where
c is the speed of light, 3.0 * 10**8 meters per second.
Combine these formulas and we see that the energy is inversely proportional to
the wavelength by: E = hc/w
If the energy is inversely proportional to the wavelength, a photon with twice the
energy has half the wavelength of our 442-nm. photon in this example.
So its wavelength is 221 nm. which is in the ultraviolet range.</span>