Answer:
um how about no.. this is not the site for what you're looking for...
Explanation:
Answer:
- Water gained: 10
- Iron lost: -10
Explanation:
Given: Hot iron bar is placed 100ml 22C water, the water temperature rises to 32C
To find: How much heat the water gain, how much heat did the iron bar lost
Formula:Q = change T x C x M
Solve:
<u>How much heat water gained</u>
Initial heat = 22, then rose to 32. To find how much heat the water gained, simply subtract the current heat by the initial heat.
32 - 22 = 10
The water gained 10 amounts of heat.
<u>How much heat Iron lost</u>
Current heat = 32, then dropped to 22. To find how much heat the Iron lost, simply subtract the initial heat by the current heat.
22 - 32 = -10
The Iron lost -10 amounts of water.
Regions in the milky way where density waves have caused gas clouds to crash into each other are called clumps.Clumps are molecular clouds (interstellar clouds) with higher density,where lots of dust and gs cores resides. These clouds are the beginning of stars.
Answer: • using beaker tongs to handle the hot beaker.
• checking the beaker for chips prior to heating on the hot plate.
• Turning off the hot plate after use
Explanation:
The options that will ensure laboratory safety during the experiment will be:
• using beaker tongs to handle the hot beaker.
• checking the beaker for chips prior to heating on the hot plate.
• Turning off the hot plate after use.
We should note that the beaker tongs are simply used in the holding of the beakers that have hot liquids in them. Also, it s vital for the hot plate to be turned off after its use so as to prevent accident.
At STP, 1 mole of an ideal gas occupies a volume of about 22.4 L. So if <em>n</em> is the number of moles of this gas, then
<em>n</em> / (19.2 L) = (1 mole) / (22.4 L) ==> <em>n</em> = (19.2 L•mole) / (22.4 L) ≈ 0.857 mol
If the sample has a mass of 12.0 g, then its molecular weight is
(12.0 g) / <em>n</em> ≈ 14.0 g/mol