Answer:
Please see the given attachment.
Explanation:
Stay safe, stay healthy and be blessed.
Thank you.
<h2>
<em><u>PLEASE</u></em><em><u> </u></em><em><u>MARK</u></em><em><u> </u></em><em><u>ME</u></em><em><u> </u></em><em><u>AS </u></em><em><u>BRAINLEST</u></em><em><u>.</u></em></h2>
The zero net electric field point is at a point that is 0.98 m away from 4.7C charge.If a 14C charge is placed at this point then, force acted on the charge placed at this point is equal to zero.
Explanation:
Let at A both net electric field is zero then
At A ,E1=E2
E1=k*Iq1I / (d+x)^2
E2=k*Iq2I /x^2
Equating both
Transverse Waves: Displacement of the medium is perpendicular to the direction of propagation of the wave. ... Longitudinal Waves: Displacement of the medium is parallel to the direction of propagation of the wave.
Missing part in the text of the problem:
"<span>Water is exposed to infrared radiation of wavelength 3.0×10^−6 m"</span>
First we can calculate the amount of energy needed to raise the temperature of the water, which is given by

where
m=1.8 g is the mass of the water

is the specific heat capacity of the water

is the increase in temperature.
Substituting the data, we find

We know that each photon carries an energy of

where h is the Planck constant and f the frequency of the photon. Using the wavelength, we can find the photon frequency:

So, the energy of a single photon of this frequency is

and the number of photons needed is the total energy needed divided by the energy of a single photon: