Answer:
Explanation:
The <u>initial</u> vertical velocity is 540sin55° = 442.342103... 442 m/s
The <u>initial</u> horizontal velocity is 540cos55° = 309.731275... 310 m/s
In the real world, both initial velocities would be reduced by air resistance and vertical velocity will be altered by gravity.
Answer: Option A: The number of trees sampled.
The accuracy can be understood as how close is the measured value to the true value. The aim is to monitor the population size of the insect pest in a 50 square kilometer. Random trees are selected, and number of eggs and larvae are counted. So, the measured value would be closer to actual value when the number of trees sampled are increased. More the number of trees sampled, less would be the chances of error and the accuracy of the estimate would increase.
Answer:
Answer D : about 1067 meters
Explanation:
There are two steps to this problem:
1) First find the time it takes the plane to stop using the equation for the acceleration:

Where Vf is the final velocity of the plane (in our case: zero )
Vi is the initial velocity of the plane (in our case: 80 m/s)
is the acceleration (in our case -3 m/s^2 - notice negative value because the velocity is decreasing)

with units corresponding to seconds given the quantities involved in the calculation.
2) Second knowing the time it took the plane to stop, now use that time in the equation for the distance traveled under accelerated motion:

Where the answer results in units of meters given the quantities used in the calculation.
We round this to 1067 meters
Answer:
331.75 V
Explanation:
Given:
Number of turns of the coil, N = 40 turns
Area, A = 0.06 m²
Magnetic Field, B = 0.4 T
Frequency, f = 55 Hz
Maximum induce emf, E₀ = NABω
but ω = 2πf
Maximum induce emf, E₀ = NAB(2πf₀)
Maximum induce emf, E₀ = 2πNABf₀
Where;
N is number of turns of the coil
A is area
B is magnetic field
ω is the angular velocity
f is the frequency
E₀ = 2 × π × 40 × 0.06 × 0.4 × 55
E₀ = 342.81 V
The maximum induced emf is 331.75 V
Https://answers.yahoo.com/question/index?qid=20120227184717AAzEq8g