The answer is D I took the test
They begin to adapt into their new location. They then end up having adaptations to help them survive.
By Newton's second law, the net vertical force acting on the object is 0, so that
<em>n</em> - <em>w</em> = 0
where <em>n</em> = magnitude of the normal force of the surface pushing up on the object, and <em>w</em> = weight of the object. Hence <em>n</em> = <em>w</em> = <em>mg</em> = 196 N, where <em>m</em> = 20 kg and <em>g</em> = 9.80 m/s².
The force of static friction exerts up to 80 N on the object, since that's the minimum required force needed to get it moving, which means the coefficient of <u>static</u> friction <em>µ</em> is such that
80 N = <em>µ</em> (196 N) → <em>µ</em> = (80 N)/(196 N) ≈ 0.408
Moving at constant speed, there is a kinetic friction force of 40 N opposing the object's motion, so that the coefficient of <u>kinetic</u> friction <em>ν</em> is
40 N = <em>ν</em> (196 N) → <em>ν</em> = (40 N)/(196 N) ≈ 0.204
And so the closest answer is C.
(Note: <em>µ</em> and <em>ν</em> are the Greek letters mu and nu)
Answer:
585×10⁸ m
Explanation:
Distance = rate × time
d = (2.998×10⁸ m/s) (3.25 min) (60 s/min)
d = 585×10⁸ m
Answer:
magnitude: 21.6; direction: 33.7 degrees
Explanation:
When we multiply a vector by a scalar, we have to multiply each component of the vector by the scalar number. In this case, we have
vector: (-3,-2)
Scalar: -6
so the vector multiplied by the scalar will have components

The magnitude is given by Pythagorean's theorem:

and the direction is given by the arctan of the ratio between the y-component and the x-component:
