Answer:
T
beacuse:
Energy can be transferred from one object to another by doing work. ... When work is done, energy is transferred from the agent to the object, which results in a change in the object's motion (more specifically, a change in the object's kinetic energy).
Answer:
work done will be equal to 305.05 J
Explanation:
We have given force exerted F = 45 N
Angle with the horizontal 
Distance moved due to exerted force d = 9.1 m
Work done is equal to
, here F is force
is angle with horizontal and d is distance moved due to force
So work done 
So work done will be equal to 305.05 J
Answer:
To calculate displacement, simply draw a vector from your starting point to your final position and solve for the length of this line. If your starting and ending position are the same, like your circular 5K route, then your displacement is 0. In physics, displacement is represented by Δs.
Explanation:
hope helps
The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
<h3>How to solve for the time interval</h3>
We have y = 0.175
y(x, t) = 0.350 sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.5
99.62 = pi/6
t1 = 5.257 x 10⁻³
99.6t = pi/6 + 2pi
= 0.0683
The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
b. we have k = 1.25, w = 99.6t
v = w/k
99.6/1.25 = 79.68
s = vt
= 79.68 * 0.0683
= 5.02
Read more on waves here
brainly.com/question/25699025
#SPJ4
complete question
A transverse wave on a string is described by the wave function y(x, t) = 0.350 sin (1.25x + 99.6t) where x and y are in meters and t is in seconds. Consider the element of the string at x=0. (a) What is the time interval between the first two instants when this element has a position of y= 0.175 m? (b) What distance does the wave travel during the time interval found in part (a)?
Answer
Time period T = 1.50 s
time t = 40 s
r = 6.2 m
a)
Angular speed ω = 2π/T
=
= 4.189 rad/s
Angular acceleration α = 
= 
= 0.105 rad/s²
Tangential acceleration a = r α = 6.2 x 0.105 = 0.651 m/s²
b)The maximum speed.
v = 2πr/T
= 
= 25.97 m/s
So centripetal acceleration.
a = 
= 
= 108.781 m/s^2
= 11.1 g
in combination with the gravitation acceleration.

