Answer:
What datatable? Picture please!
Explanation:
Answer is: concentratio of H₃O⁺ ions is 4.2·10⁻³ M.<span>
Chemical reaction: HCOOH(aq) + H</span>₂O(l) ⇄ HCOO⁻(aq) + H₃O⁺(aq).<span>
c(HCOOH) = 0,1 M.
[</span>H₃O⁺] = [HCOO⁻] = x.<span>
[HCOOH] = 0,1 M - x.
</span>Ka = [H₃O⁺] · [HCOO⁻] / [HCOOH].
0,00018 = x² / (0,1 M - x).<span>
Solve quadratic equation: x = </span>[H₃O⁺] = 0,0042 M.
That would be an endothermic reaction! :)
Answer:
Option B. 4.25×10¯¹⁹ J
Explanation:
From the question given above, the following data were obtained:
Frequency (f) = 6.42×10¹⁴ Hz
Energy (E) =?
Energy and frequency are related by the following equation:
Energy (E) = Planck's constant (h) × frequency (f)
E = hf
With the above formula, we can obtain the energy of the photon as follow:
Frequency (f) = 6.42×10¹⁴ Hz
Planck's constant (h) = 6.63×10¯³⁴ Js
Energy (E) =?
E = hf
E = 6.63×10¯³⁴ × 6.42×10¹⁴
E = 4.25×10¯¹⁹ J
Thus, the energy of the photon is 4.25×10¯¹⁹ J
Answer:
1. troposphere
2. less dense/decreases
3. ozone
4. nitrogen
5. xylem
6. flagellum
7. kingdom fungi
8. Ocean convection currents
9. As they fly, insects spread pollen that sticks to their bodies from the flowers.
10. the plastic handle, because it is a good insulator.
11. The hyphae, or feeding structures, reach deep into the wood to obtain nutrients
12. chemical energy
13. created or destroyed.
14. electromagnet
15. c
16. kinetic, elastic potential