Answer:
Explanation:
Flame test:
The metals ions can be detected through the flame test. Different ions gives different colors when heated on flame. Tom perform the flame test following steps should follow:
1. Dip a wire loop in the solution of compound which is going to be tested.
2. After dipping put the loop of wire on bunsen burner flame.
3. Observe the color of flame.
4. Record the flame color produce by compound
Color produce by metals:
Red = Lithium, zirconium, strontium, mercury, Rubidium (red violet)
Orange-red = calcium
Yellow = sodium, iron (brownish yellow)
Green = green
Blue = cesium. arsenic, copper, tantalum, indium, lead
Violet = potassium (lilac)
When an electron in a quantum system drops from a higher energy level to a lower one, the system<u> emit a photon.</u>
<u />
The energy of the electron drops when it transitions levels, as well as the atom releases photons. The emission of the photon occurs as the electron transitions from an energy state to a lower state. The photon energy represents precisely the energy that would be lost when an electron moves to a level with less energy.
When such an excited electron transitions from one energy level to another, this could emit a photon. The energy drop would be equivalent to the power of the photon that is released. In electron volts, the energy of an electron, as well as its associated photon (emitted or absorbed) has been stated.
Therefore, when an electron in a quantum system drops from a higher energy level to a lower one, the system<u> emit a photon.</u>
<u />
To know more about electron
brainly.com/question/1255220
#SPJ4
<u />
The answer is N2 + 3H2 yields 2NH3. The oxidation-reduction reaction means that there is electrons transfer during the reaction which means that the valence changed.
Answer:
11419 J/g/ 11.419 KJ/g
Explanation:
H=MCQ
H=225×2.03×(-15-10)
H=225×2.03(25) Note; negative sign is of no use
H=11419J/g
Answer:
The correct answer is thermophiles.
Explanation:
Thermus aquaticus are heat resistant bacteria because these bacteria can survive under adverse environmental conditions like high temperature.
These bacteria belong to one of the most heat-loving groups of extremophiles that are thermophiles. Thermophiles are present in volcanic soil, geysers and around deep-sea vents where the temperature is extremely high.
Thermus aquaticus bacteria is used to manufacture an enzyme called Taq DNA polymerase, which is heat resistant and also an important factor in molecular biology.