This is late but for anyone else who needs it...It's D. Far left
Answer:
k= 1.925×10^-4 s^-1
1.2 ×10^20 atoms/s
Explanation:
From the information provided;
t1/2=Half life= 1.00 hour or 3600 seconds
Then;
t1/2= 0.693/k
Where k= rate constant
k= 0.693/t1/2 = 0.693/3600
k= 1.925×10^-4 s^-1
Since 1 mole of the nuclide contains 6.02×10^23 atoms
Rate of decay= rate constant × number of atoms
Rate of decay = 1.925×10^-4 s^-1 ×6.02×10^23 atoms
Rate of decay= 1.2 ×10^20 atoms/s
<u>Answer:</u> The concentration of solution is 0.342 M
<u>Explanation:</u>
To calculate the molarity of solution, we use the equation:

We are given:
Mass of solute (Sodium chloride) = 15 g
Molar mass of sodium chloride = 58.5 g/mol
Volume of solution = 750 mL
Putting values in above equation, we get:

Hence, the concentration of solution is 0.342 M
Answer
Commercial farming is a large-scale production of crops for sale, intended for widespread distribution to wholesalers or retail outlets.
Answer:

Explanation:
Hello there!
In this case, given the T-V variation, we understand it is possible to apply the Charles' law as shown below:

Thus, since we are interested in the initial temperature, we can solve for T1, plug in the volumes and use T2 in kelvins:

Best regards!