Answer:
Matter is a substance that has inertia and occupies physical space.
Matter is literately in <u>everything</u>
Explanation:
Examples of matter:
Your body
A home
The air
Things that are <u>not</u> matter are:
A light
Heat form fire
Sounds
There <u>not</u> matter because you <u>cant touch, smell or taste them</u>.
Answer:
The difference is 293.15 Kelvin.
Explanation:
Given data:
Temperature difference of matter = 20°C
Temperature difference of matter in kelvin = ?
Solution;
Formula:
0°C +273.15
now we will put the values instead of 0.
20°C + 273.15 = 293.15 K
Thus, the temperature difference between two sample is 293.15 K.
Homogeneous mixture that does not settle out upon standing but which will reflect light is called COLLOIDS.
There are three types of homogeneous mixtures, these are: solutions, colloids and suspension. Colloids are usually distinguished by Tyndall effects. Light passing through a colloidal dispersion will be reflected.<span />
Answer:
Option D. AlCl₃, MgC₂
Explanation:
We need to dissociate all the salts, to determine the i. (Van't Hoff factor).
The salt who has the highest value, will be the better conductor of electricity
CsCl → Cs⁺ + Cl⁻ i = 2
CaCl → Ca²⁺ + Cl⁻ i = 2
CaS → Ca²⁺ + S⁻² i = 2
Li₂S → 2Li⁺ + S⁻² i = 3
KBr → K⁺ + Br⁻ i = 2
AlCl₃ → Al³⁺ + 3Cl⁻ i = 4
MgC₂ → Mg²⁺ + 2C⁻ i = 3
KI → K⁺ + I⁻ i = 2
K₂S → 2K⁺ + S⁻² i = 3
The biggest i, is in pair D.
Answer:
At STP, 760mmHg or 1 atm and OK or 273 degrees celcius
Explanation:
The standard temperature and pressure is the temperature and pressure at which we have the molecules of a gas behaving as an ideal gas. At this temperature and pressure, it is expected that the gas exhibits some properties that make it behave like an ideal gas.
This temperature and pressure conform some certain properties on a gas molecule which make us say it is behaving like an ideal gas. Ordinarily at other temperatures and pressures, these properties are not obtainable
Take for instance, one mole of a gas at stp occupies a volume of 22.4L. This particular volume is not obtainable at other temperatures and pressures but at this particular temperature and pressure. One mole of a gas will occupy this said volume no matter its molar mass and constituent elements. This is because at this temperature and pressure, the gas is expected to behave like an ideal gas and thus exhibit the characteristics which are expected of an ideal gas