Using the principle of floatation.
u = w............(a)
Upthrust of fluid is equal to the weight of the object.
Let the volume of the wood be V.
The upthrust u, is related to the volume submerged in water, and that is 1/5 of it volume, that is (1/5)V = 0.2V
Formula for upthrust, u = vdg
where v = volume of fluid displaced
d = density of fluid
g = acceleration due to gravity
weight, w = mg
where m = mass
g = acceleration due to gravity
From (a)
u = w
vdg = mg Cancel out g
vd = m
The v is equal to 0.2V, which is the submerged volume. Notice that the small letter v is volume of fluid displaced, and capital V is the volume of the solid.
d is density of fluid which is water in this case, 1000 kg/m³
0.2V * 1000 = m
200V = m
Hence the mass of the object is 200V kg.
But Density of solid = Mass of solid / Volume of solid
= 200V / V
= 200 kg/m³
Density of solid = 200 kg/m³
Answer:
2.5m/s^2
Explanation:
Step one:
given
distance = 20meters
time = 2 seconds
initial velocity u= 0m/s
let us solve for the final velocity
velocity = distance/time
velocity= 20/2
velocity= 10m/s

divide both sides by 40

Answer:
Explanation:
Give that,
Spring constant (k)=40N/m
Force applied =75N
Since the force is applied to the right, we don't know if it is compressing or stretching the spring
So let assume it compress
Using hooke's law
F=-ke
e=-F/k
Then, e=-75/40
e=-1.875m
The deformation is 1.875m.
Let assume it stretch
Using hooke's law
-F=-ke
e=F/k
Then, e=75/40
e=1.875m
The elongation is 1.875m
Answer:
(A). The current in the circuit is 19.25 mA.
(B). The store energy in the inductor is 7.04 μJ.
Explanation:
Given that,
Voltage = 8.2 V
Inductor = 38 mH
Resistance = 150 Ω
Time t = 0.110 ms
The battery has negligible internal resistance, so that the total resistance in the circuit is 150 ohms. Then use this equation for current at time t in terms of inductance
We need to calculate the current
Using formula of current

Put the value into the formula



(B). We need to calculate the store energy in the inductor
Using formula of energy

Put the value into the formula


{tex]E=7.04\ \mu J[/tex]
Hence, (A). The current in the circuit is 19.25 mA.
(B). The store energy in the inductor is 7.04 μJ.