<h2>Answer: about the same size of the gap or slit</h2>
Diffraction happens when a wave (mechanical or electromagnetic wave, in fact, any wave) meets an obstacle or a slit .When this occurs, the wave bends around the corners of the obstacle or passes through the opening of the slit that acts as an obstacle, forming multiple patterns with the shape of the aperture of the slit.
Note that the principal condition for the occurrence of this phenomena is that the obstacle must be comparable in size (similar size) to the size of the wavelength.
In other words, when the gap (or slit) size is larger than the wavelength, the wave passes through the gap and does not spread out much on the other side, but when the gap size is equal to the wavelength, maximum diffraction occurs.
Therefore:
<h2>Waves diffract the most when their wavelength is <u>about the same size of the gap
</u></h2>
<u />
Answer:
E
Explanation:
A vector is a physical quantity that has magnitude and direction while a scalar is a physical quantity that has magnitude only
*electric potential is a scalar quantity because it only has magnitude
*electric field and electric force are vector quantities because they have magnitude and direction
Answer:
3.75s
Explanation:
a = 8.0 m/s V = 30 m/s U = 0 m/s t = ?
t = V - U/a
t = 30 - 0/8
t = 30/8 = 15/4
t = 3.75s
Answer:
This situation is possible.
Explanation:
It is said in the problem that one morning two trains are speeding up from opposite directions onto the bridge. It may seem from this statement that the trains are arriving at the same time. But this should be a wrong assumption.
Because it is only said in the problem that the trains are passing the bridge on same morning. No explicit timing is given.
So it may so happen that both the trains pass the narrow bridge on the same morning but at two difeerent times, making no collision with each other.
Explanation:
A small piece of energy is called as Electron. It cannot be broken down further into smaller pieces. Photon is a basic unit of light. Photons always travel. They are in a continuous motion. So when electron needs energy, They absorb light. The light is absorbed or emitted in the form of photons. Each photon contains energy which is absorbed by the electron to gain its energy. After absorbing the photon, electron moves towards a higher energy level. So when an electron absorbs a photon, energy is gained by the electron.