In physics, the law of conservation of energy<span> states that the total</span>energy<span> of an isolated system remains constant—it is said to be conserved over time. </span>Energy<span> can neither be created nor destroyed; rather, it transforms from one form to another.</span>
If the density of water does not vary and the vents range in depth from about 1500 m to 3200 m below the surface, then the gauge pressure at a 2452-m deep vent is 224.268 atm.
Calculation:
Step-1:
It is given that the vents range in depth from about 1500 m to 3200 m below the surface. If we are assuming that the density of water does not vary. Then it is required to calculate the gauge pressure at a 2452-m deep vent.
The gauge pressure at a particular depth of ocean water is calculated as:

Here
is the density of water, P is the required pressure, h is the depth of water, and g is the gravitational acceleration.
Step-2:
Now we are substituting the values to calculate the pressure at the depth of 2452-m.

Learn more about gauge pressure here,
brainly.com/question/14012416
#SPJ4
There are four chipmunks on that tree
two of the dogs have white fur
Answer:

Explanation:
We have given mass of helium nucleus 
Velocity of helium nucleus 
Momentum of the helium nucleus is given by
where m is mass and v is velocity
So
Option (ii) B is the correct option. The object on the moon has greater mass.
To resolve this, utilize the formulas Force = Mass * Acceleration.
The equation can be used to find the mass given the force in Newtons, using 9.8 m/s² for the acceleration of gravity of the earth and 1.6 m/s² for the moon.
Calculating the mass on earth:
30 N = 9.8 m/s² * mass
This results in a mass of 3.0 kg for the object on Earth.
Calculating the mass of the moon:
30 N = 1.6 m/s²2 * mass
Thus, the moon's object has a mass of 19. kg.
This can be explained by the fact that the earth has a stronger gravitational pull than the moon, producing more force per kilogram of mass. As a result, the moon's mass must be bigger to produce the same amount of force at a lower acceleration from gravity (1.6 m/s² vs. 9.8 m/s²).
To know more about Mass, refer to this link :
brainly.com/question/13386792
#SPJ9