Answer:
20 °C
Explanation:
Ideal gas law:
PV = nRT
Rearranging:
P / T = nR / V
Since n, R, and V are constant:
P₁ / T₁ = P₂ / T₂
488.2 kPa / T = 468 kPa / 281.15 K
T = 293.29 K
T = 20.1 °C
Rounded, the temperature was 20 °C.
Answer:
-15 m/s
Explanation:
The computation of the velocity of the 4.0 kg fragment is shown below:
For this question, we use the correlation of the momentum along with horizontal x axis
Given that
Weight of stationary shell = 6 kg
Other two fragments each = 1.0 kg
Angle = 60
Speed = 60 m/s
Based on the above information, the velocity = v is



= -15 m/s
Explanation:
It is given that,
A mass oscillates up and down on a vertical spring with an amplitude of 3 cm and a period of 2 s. It is a case of simple harmonic motion. If the amplitude of a wave is T seconds, then the distance cover by that object is 4 times the amplitude.
In 2 seconds, distance covered by the mass is 12 cm.
In 1 seconds, distance covered by the mass is 6 cm
So, in 16 seconds, distance covered by the mass is 96 cm
So, the distance covered by the mass in 16 seconds is 96 cm. Hence, this is the required solution.