Answer:
The value is 
Explanation:
From the question we are told that
The power rating of the bulb is 
The frequency is 
The percentage of the input power that is emitted as visible light is 
Generally the amount of power emitted as visible light is mathematically represented as

=> 
=> 
Generally the amount of energy emitted as light is mathematically represented as

Here n is the number of photon , h is the Planks constant with value 
Generally this power emitted as visible light is mathematically represented as

=> 
=> 
=> 
=> 
The difference in the mass of carbon dioxide in 500 kg of air in 2013 compared to 1800 is 0.06 Kg
<h3>Data obtained from the question</h3>
- Year 1800 percent = 0.028%
- Year 2013 percent = 0.040%
- Mass of air = 500 Kg
- Difference =?
<h3>How to determine the mass of CO₂ in 500 Kg in year 1800</h3>
- Year 1800 percent = 0.028%
- Mass of air = 500 Kg
- Mass of CO₂ =?
Mass = percent × mass of air
Mass of CO₂ = 0.028% × 500
Mass of CO₂ = 0.14 Kg
<h3>How to determine the mass of CO₂ in 500 Kg in year 2013</h3>
- Year 1800 percent = 0.040%
- Mass of air = 500 Kg
- Mass of CO₂ =?
Mass = percent × mass of air
Mass of CO₂ = 0.040% × 500
Mass of CO₂ = 0.2 Kg
<h3>How to determine the difference</h3>
- Mass of CO₂ in year 1800 = 0.14 Kg
- Mass of CO₂ in year 2013 = 0.2 Kg
- Difference =?
Difference = mass in 2013 - mass in 1800
Difference = 0.2 - 0.14
Difference = 0.06 Kg
Learn more about composition:
brainly.com/question/11617445
#SPJ1
Answer:
This is an example of Inelastic colission
Explanation:
Step one:
given:
mass of moose m1 = 620 kg
mass of train m2= 10,000kg
Initial velocity of moose u1= 0 m/s
Initial velocity of train v1 = 10m/s
combined velocity of the system is given as v
Applying the conservation of momentum equation we have
m1u1+ m2u1= (m1+m2)V
substitutting we have
620*0+10000*10= (620+10000)V
100000= 10620V
divide both sides by 10620
V = 100000/10620
V=9.41m/s
The velocity of the moose after impact is 9.41m/s
Then, it jumps to HIGHER ORBITALS