Explanation:
As per Brønsted-Lowry concept of acids and bases, chemical species which donate proton are called Brønsted-Lowry acids.
The chemical species which accept proton are called Brønsted-Lowry base.
(a) 
is Bronsted lowry acid and
is its conjugate base.
is Bronsted lowry base and
is its conjugate acid.
(b)

is Bronsted lowry base and HCN is its conjugate acid.
is Bronsted lowry acid and
is its conjugate base.
(c)

is Bronsted lowry acid and
is its conjugate base.
Cl^- is Bronsted lowry base and HCl is its conjugate acid.
(d)

is Bronsted lowry acid and
is its conjugate base.
OH^- is Bronsted lowry base and
is its conjugate acid.
(e)

is Bronsted lowry base and OH- is its conjugate acid.
is Bronsted lowry acid and OH- is its conjugate base.
Answer:
this showed that the cathode rays traveled in straight line
Net ionic equation
Cu²⁺(aq)+S²⁻(aq)⇒CuS(s)
<h3>Further explanation</h3>
Double-Replacement reactions. Happens if there is an ion exchange between two ion compounds in the reactant to form two new ion compounds in the product
In the ion equation, there is a spectator ion that is the ion which does not react because it is present before and after the reaction
When these ions are removed, the ionic equation is called the net ionic equation
For gases and solids including water (H₂O) can be written as an ionized molecule
Reaction
CuSO₄(aq)+Na₂S(aq)⇒CuS(s)+Na₂SO₄
ionic equation
Cu²⁺(aq)+SO₄²⁻(aq)+2Na⁺(aq)+S²⁻(aq)⇒CuS(s)+2Na⁺(aq+SO₄²⁻(aq)
spectator ions : 2Na⁺ and SO₄²⁻
Net ionic equation
Cu²⁺(aq)+S²⁻(aq)⇒CuS(s)
Answer:
METHOD 1: (surface area of a solid reactant) METHOD 2: (concentration or pressure of a reactant)
Explanation:
METHOD 1: (surface area of a solid reactant) Increasing the surface area of a solid reactant exposes more of its particles to attack. This results in an increased chance of collisions between reactant particles, so there are more collisions in any given time and the rate of reaction increases.
METHOD 2: (concentration or pressure of a reactant) Increasing the concentration means that we have more particles in the same volume of solution. This increases the chance of collisions between reactant particles, resulting in more collisions in any given time and a faster reaction. As we increase the pressure of reacting gases, we increase the rate of reaction.