Answer:
HF
Explanation:
This concept can be understood from the knowledge of Intermolecular forces of attraction.
Intermolecular bonds are Van der Waals forces which are weak forces of attraction joining non-polar and polar molecules together. They exist in the form of London Dispersion Forces and Dipole-dipole attraction.
An example of Dipole-dipole attraction is the hydrogen bond which is a unique dipole-dipole attraction between polar molecules in which a hydrogen atom is directly joined to a highly electronegative atom such as fluorine, oxygen, or nitrogen).
Molecules that possess the characteristics of hydrogen bonding have a higher boiling point. In the given question, only HF undergo hydrogen bond due to the electronegative effect of the fluorine element.
F2 occurs as a weak London dispersion force and it occurs between non-polar molecules.
Answer: D=4.35g/L
Explanation:
The formula for density is
. M is mass in grams and V is volume in liters.
Since we are give pressure and temperature, we can use the ideal gas law to find moles/volume. FInding moles/volume would give us the base for density. All we would have to do is convert moles to grams.
Ideal Gas Law: PV=nRT



Now that we have moles, we can use molar mass of chlorine gas to find grams.

With our grams, we can find our density.

We need correct significant figures so our density is:

Answer:
<h2>3.25 </h2>
Explanation:
The pH of a solution can be found by using the formula
![pH = - log [ { H_3O}^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5B%20%7B%20H_3O%7D%5E%7B%2B%7D%5D)
From the question we have

We have the final answer as
<h3>3.25 </h3>
Hope this helps you