Answer:
The magnetic force will be 0.256 N in +y direction.
Explanation:
It is given that, a wire along the z axis carries a current of 6.4 A in the z direction. Length of the wire is 8 cm. It is placed in uniform magnetic field with magnitude 0.50 T in the x direction.
The magnetic force in terms of length of wire is given by :

For direction,

So, the magnetic force will be 0.256 N in +y direction.
Equation C describes the sum of the vectors plotted below.
<h3>What is a vector?</h3>
A vector is a quantity or phenomena with magnitude and direction that are independent of one another. The phrase also refers to a quantity's mathematical or geometrical representation.
If no vector can be written as a linear combination of the others, a set of vectors is said to be linearly independent.
The given points from the graph is obtained as;
a = (2,1)
b = (3,-2)
Vector, OA = 2x + y
Vector, AB = x - 3 y
From the triangular lawe of the vector addition;

Hence,option C is correct.
To learn more about the vector refer to the link;
brainly.com/question/13322477
#SPJ1
Answer:
Base-emitter and Base-collector junctions are forward biased
Kinetic energy lost in collision is 10 J.
<u>Explanation:</u>
Given,
Mass,
= 4 kg
Speed,
= 5 m/s
= 1 kg
= 0
Speed after collision = 4 m/s
Kinetic energy lost, K×E = ?
During collision, momentum is conserved.
Before collision, the kinetic energy is

By plugging in the values we get,

K×E = 50 J
Therefore, kinetic energy before collision is 50 J
Kinetic energy after collision:


Since,
Initial Kinetic energy = Final kinetic energy
50 J = 40 J + K×E(lost)
K×E(lost) = 50 J - 40 J
K×E(lost) = 10 J
Therefore, kinetic energy lost in collision is 10 J.