Answer:
a = kL/m
Explanation:
Here we can use Hooke's Law to find out the force applied on the system. Hooke's Law states that when a spring is stretched by some force, the force applied is directly proportional to the displacement of spring. The formula is given as:
F = kL
Now, the Newton's Second Law of motion states that whenever an unbalanced force is applied to a body it produces an acceleration in the body, in its own direction. So, the force is given by the formula:
F = ma
Comparing both the forces, we get:
kL = ma
<u>a = kL/m</u>
Answer:
461.88 N
Explanation:
= Weight of the swing = 800 N
= Tension force in the rope
= Horizontal force being applied by the partner
Using equilibrium of force in vertical direction using the force diagram, we get

Using equilibrium of force in horizontal direction using the force diagram, we get

Answer: contain different amounts of energy
Explanation:
The energy
of a photon is given by:
Where:
is the Planck constant
is the frequency of the light which is inversely related to the wavelength.
Now, if we have photons of different light waves, this means we have photons with different frequencies.
As the energy of the photon depends on its frequency:
Photons of different light waves <u>contain different amounts of energy.</u>