Answer: Option (C) is the correct answer.
Explanation:
Movement of particles in a substance is responsible for change in state of the substance or matter.
This means that more is the motion of particles more will be their kinetic energy.
Also, kinetic energy is directly proportional to temperature.
K.E =
So, less is the temperature of an object or substance less will be be the motion of its particles. Therefore, molecules will come closer to each other and state of substance will change from liquid to solid.
Thus, we can conclude that the motion of the molecules would decrease at a molecular level if a liquid is placed in cool conditions.
Answer:
5 L
Explanation:
So this problem refers to Charles's law. You would use this formula..
(Initial volume / Initial Temperature) = (Final volume / Final Temperature)
For your problem, it would look like this...
You would cross multiply and your answer would be 5L.
To reassure yourself that the answer is correct, Charles law states that the Volume and the Temperature are directly proportional. Meaning if your temperature is decreasing, your volume <u>has</u> to decrease.
Answer:
Workplace Hazardous Materials Information System
WHMIS is a short form for Workplace Hazardous Materials Information System. It is a comprehensive plan for providing information on the safe use of hazardous materials used in Canadian workplaces. Information is provided by means of product labels, material safety data sheets (MSDS) and worker education programs.
Chlorine is a halogen and is very reactive and unstable. If released in an elemental form (Cl2), it would react with other substances immediately. However, <span>chlorofluorocarbons (CFCs) which contain chlorine are unreactive and when released they eventually end up in the upper atmosphere still "intact". In the upper atmosphere, sunlight is more intense and is able to break apart CFC, releasing the highly reactive chlorine which in turns destroys ozone which is more abundant in the upper atmosphere (stratosphere). </span>