Answer:
We need 78.9 mL of the 19.0 M NaOH solution
Explanation:
Step 1: Data given
Molarity of the original NaOH solution = 19.0 M
Molarity of the NaOH solution we want to prepare = 3.0 M
Volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
Step 2: Calculate volume of the 19.0 M NaOH solution needed
C1*V1 = C2*V2
⇒with C1 = the concentration of the original NaOH solution = 19.0 M
⇒with V1 = the volume of the original NaOH solution = TO BE DETERMINED
⇒with C2 = the concentration of the NaOH solution we want to prepare = 3.0 M
⇒with V2 = the volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
19.0 M * V2 = 3.0 M * 0.500 L
V2 = (3.0 M * 0.500L) / 19.0 M
V2 = 0.0789 L
We need 0.0789 L
This is 0.0789 * 10^3 mL = 78.9 mL
We need 78.9 mL of the 19.0 M NaOH solution
Answer:
6 C(s) + 3 O₂(g) + 2 Fe₂O₃(s) → 4 Fe(s) + 6 CO₂(g)
Explanation:
Iron can be formed in two steps.
Step 1: 2 C(s) + O₂(g) → 2 CO(g)
Step 2: Fe₂O₃(s) + 3 CO(g) → 2 Fe(s) + 3 CO₂(g)
In order to get the net chemical equation, we will multiply the first step by 3, the second step by 2, and then add them.
6 C(s) + 3 O₂(g) → 6 CO(g)
+
2 Fe₂O₃(s) + 6 CO(g) → 4 Fe(s) + 6 CO₂(g)
--------------------------------------------------------------------------------------------------
6 C(s) + 3 O₂(g) + 2 Fe₂O₃(s) + 6 CO(g) → 6 CO(g) + 4 Fe(s) + 6 CO₂(g)
6 C(s) + 3 O₂(g) + 2 Fe₂O₃(s) → 4 Fe(s) + 6 CO₂(g)
Answer:
15 mL of the solute
Explanation:
From the question given above, the following data were obtained:
Solution = 50 mL
Solvent = 35 mL
Solute =?
Solution is simply defined as:
Solution = solute + solvent
With the above formula, we can easily obtain the solute in the solution as follow:
Solution = 50 mL
Solvent = 35 mL
Solute =?
Solution = solute + solvent.
50 = solute + 35
Collect like terms
50 – 35 = solute
15 = solute
Solute = 15 mL
Therefore, 15 mL of the solute is required.
Hi, you've asked an incomplete question. Here's the diagram that completes the question.
Answer:
<u>(B) nonpolar covalent bonds</u>
Explanation:
This structure in the diagram rightly fits the description of a non-covalent bond because there is an equal sharing of electrons of Carbon (C) and Chlorine (Cl).
<em>Remember</em> too that these elements are in their solid-state, hence the CCl4 (carbon tetrachloride) molecules are held strongly together.
Answer:
P = 5.14ATM
Explanation:
Number of moles = 0.108moles
Temperature (T) = 20°C = 20 + 273.15 = 293.15K
Volume V = 0.505L.
Pressure (P) = ?
R = 0.082J/mol.K
From ideal gas equation,
PV = nRT
P = nRT / V
P = (0.108 * 0.082 * 293.15) / 0.505
P = 2.596 / 0.505
P = 5.14ATM
The pressure of the gas is 5.14ATM