Answer: Option (b) is the correct answer.
Explanation:
The given data is as follows.
mass = 0.508 g, Volume = 0.175 L
Temperature = (25 + 273) K = 298 K, P = 1 atm
As per the ideal gas law, PV = nRT.
where, n = no. of moles =
Hence, putting all the given values into the ideal gas equation as follows.
PV =
1 atm \times 0.175 L =
= 71.02 g
As the molar mass of a chlorine atom is 35.4 g/mol and it exists as a gas. So, molar mass of is 70.8 g/mol or 71 g/mol (approx).
Thus, we can conclude that the gas is most likely chlorine.
Answer:
1.4 × 10^-4.
Explanation:
C3H6O3 + H2O <======> C3H5O3^- + H3O^+ ------------------------------------------(1).
So, from the question above we are given the following parameters or data which is going to help in solving this particular Question/problem;
=>concentration of the solution of lactic acid (CH3CH(OH)C00H) = 0.1 M and pH = 2.44.
Therefore, the concentration of the hydrogen ion[H^+} can be determined from the pH formula given below;
pH = - log { H^+}.
2.44 = - log { H^+}.
Therefore, {H^+} = 0.0036 M.
From the equation (1) given above, we have that the ratio for the equilibrium reaction is 1 : 1 : 1 :1. Therefore, molarity of C3H5O3^- = 0.0036 M and the molarity of C3H6O3 =( 0.1 - 0.0036 M) = 0.0964 M at equilibrium.
Hence, ka = {C3H5O3^-} { H3O^+} /{C3H6O3} = ( 0.0036 M)^2 /(0.0964 M) = 1.4 × 10^-4.
Answer:
it cannot be separated by physical methods
Explanation:
Covalent bonds form when electrons are shared between two nonmetals.