This lesson is the first in a three-part series that addresses a concept that is central to the understanding of the water cycle—that water is able to take many forms but is still water. This series of lessons is designed to prepare students to understand that most substances may exist as solids, liquids, or gases depending on the temperature, pressure, and nature of that substance. This knowledge is critical to understanding that water in our world is constantly cycling as a solid, liquid, or gas.
In these lessons, students will observe, measure, and describe water as it changes state. It is important to note that students at this level "...should become familiar with the freezing of water and melting of ice (with no change in weight), the disappearance of wetness into the air, and the appearance of water on cold surfaces. Evaporation and condensation will mean nothing different from disappearance and appearance, perhaps for several years, until students begin to understand that the evaporated water is still present in the form of invisibly small molecules." (Benchmarks for Science Literacy<span>, </span>pp. 66-67.)
In this lesson, students explore how water can change from a solid to a liquid and then back again.
<span>In </span>Water 2: Disappearing Water, students will focus on the concept that water can go back and forth from one form to another and the amount of water will remain the same.
Water 3: Melting and Freezing<span> allows students to investigate what happens to the amount of different substances as they change from a solid to a liquid or a liquid to a solid.</span>
I believe the balanced chemical equation is:
C6H12O6 (aq) + 6O2(g)
------> 6CO2(g) + 6H2O(l)
First calculate the
moles of CO2 produced:
moles CO2 = 25.5 g
C6H12O6 * (1 mol C6H12O6 / 180.15 g) * (6 mol CO2 / 1 mol C6H12O6)
moles CO2 = 0.8493 mol
Using PV = nRT from
the ideal gas law:
<span>V = nRT / P</span>
V = 0.8493 mol *
0.08205746 L atm / mol K * (37 + 273.15 K) / 0.970 atm
<span>V = 22.28 L</span>
Answer:
Constellations Changing Positions!!!! :D <----(smiley face)
Explanation:
Due to the earth's rotation, stars appear to move. As the Earth rotates from west to east, the stars appear to rise in the East, moving across south to set in the west. The Sun will appear to move through the stars, making one complete circuit of the sky in 365 days!!
(yes i'm literally 9+6 years old and idek why i'm doing this XD )
Answer:
6.4 g BaSO₄
Explanation:
You have been given the molarity and the volume of the solution. To find the mass of the solution, you need to (1) find the moles BaSO₄ (via the molarity ratio) and then (2) convert moles BaSO₄ to grams BaSO₄ (via the molar mass). It is important to arrange the conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 2 sig figs to reflect the sig figs of the given values.
Molarity (mol/L) = moles / volume (L)
(Step 1)
55 mL / 1,000 = 0.055 L
Molarity = moles / volume <----- Molarity ratio
0.5 (mol/L) = moles / 0.055 L <----- Insert values
0.0275 = moles <----- Multiply both sides by 0.055
(Step 2)
Molar Mass (BaSO₄): 137.33 g/mol + 32.065 g/mol + 4(15.998 g/mol)
Molar Mass (BaSO₄): 233.387 g/mol
0.0275 moles BaSO₄ 233.387 g
--------------------------------- x ------------------- = 6.4 g BaSO₄
1 mole