The volume of the buffer solution having a ph value is calculated by henderson's hasselbalch equation.
Buffer solution is water based solution which consists of a mixture containing a weak acid and a conjugate base of the weak acid. or a weak base and conjugate acid of a weak base.it is a mixture of weak acid and a base. The pH of the buffer solution is determined by the expression of the henderson hasselbalch equation.
pH=pKa + log [salt]/[acid]
Where, pKa =dissociation constant , A- = concentration of the conjugate base, [HA]= concentration of the acid. Here, a buffer solution contains 0.403m acetic acid and 250 ml is added in order to prepare a buffer with a ph of 4.750. Putting all the values in the henderson hasselbalch equation we find the pH of the buffer solution.
To learn more about hendersons hasselbalch equation please visit:
brainly.com/question/13423434
#SPJ4
Answer:
Keep it simple. If all the oxygen contained in the 200 grams of potassium chlorate is produced in the decomposition, then all we have to do is find out how many grams of oxygen are there in the 200 grams. This we can do by calculating the ratio of oxygen mass to the whole. Using 39.1 for potassium, 35.45 for chlorine and 3 times 16, or 48 for the oxygen, we get a total of 122.55 grams per mole for potassium chlorate, of which 48 grams are oxygen. This ratio is 48/122.55. This ratio times the original 200 grams of the compound, gives us 78.34 grams of oxygen produced.
Explanation:
This may seem confusing because they give you two masses, but all you have to do is pick one to do the calculations. Personally, I would pick O2, since the molar mass is easier to calculate. The answer would be 3.3 g (rounded for sig figs). To get this, first take the 5.9 grams of O2 and convert it to moles by dividing by the molar mass of oxygen gas, which is 32. Then, multiply both by the mole-mole ratio, which is 2:2, or simply 1:1. After that, multiply that by 18g, which is the molar mass of water to get grams of water.
REMEMBER, you have to write and balance the chemical equation before you can do any of that work.
That happens to be CH4 + 2O2 => CO2 + 2H2O
If iron has a density of 7.87g/cm³ and a mass of 3.729g, then the volume of iron is 0.474cm³
HOW TO CALCULATE VOLUME:
- The volume of a substance can be calculated by dividing the mass by its density. That is;
Volume (mL) = mass (g) ÷ density (g/mL)
- The density of iron is given as 7.87g/cm³ while its mass is 3.729g of iron. Hence, the volume can be calculated as follows:
Volume = 3.729 ÷ 7.87
Volume = 0.474cm³
Therefore, the volume of iron is 0.474cm³
Learn more: brainly.com/question/2040396?referrer=searchResults