Answer:
Percent error = 3.7%
Explanation:
Given data:
Density of Al cylinder = ?
Weight of cylinder = 18 g
Diameter = 1.3 cm
Height = 5.2 cm
Actual density of Al = 2.7 g/cm³
Percent error = ?
Solution:
First of all we will calculate the volume of cylinder through given formula.
V = πr²h
r = diameter /2
V = 22/7 × (0.65 cm)²× 5.2 cm
V = 22/7 × 0.4225cm²× 5.2 cm
V = 6.89 cm³
Now we will calculate the density.
d = m/v
d = 18 g/ 6.89 cm³
d = 2.6 g/cm³
Percent error:
Percent error = measured value - actual value /actual value × 100
Percent error = 2.6g/cm³ - 2.7g/cm³ /2.7g/cm³ × 100
Percent error = 3.7%
Negative sign shows that measured or experimental value is less than actual value.
Gamma rays consist of pure energy. Beta particles consist of one electron that is released at high speeds from an unstable nucleus and an alpha particle is a helium nucleus.
We know that Gamma rays consist of pure energy because, during Gamma decay, the atomic and mass numbers remain unchanged. Therefore, only energy is emitted.
Gamma rays are weakly ionising, however, they are strongly penetrating and thick concrete or a few centimetres of aluminium is needed to stop them.
I think the answer you're looking for is digestion.
The molarity is a concentration unit which defined as the number of moles of solute divided by the number of liters of solution. So the molarity of the solution is 3/2=1.5 mol/L.
a) NH₃ molecules have stronger intermolecular attractions than CH₄ molecules.
Explanation:
Ammonia molecules have stronger intermolecular attractions compared to methane.
Ammonia molecules have london dispersion forces and hydrogen bonds between their molecules.
Methane molecules have only london dispersion forces in their structure.
- hydrogen bonds are very strong attractive forces between molecules in which the hydrogen of a molecule is attracted by a more electronegative atom of another usually oxygen, nitrogen and fluorine.
- London dispersion forces are weak forces of attraction between heteronuclear atoms.
Learn more:
Hydrogen bonds brainly.com/question/10602513
#learnwithBrainly