Answer:
Triangles ABE and CDE are congruent by AAS.
Step-by-step explanation:
AB ≅ DC (Opposite sides of a parallelogram are congruent.
m < AEB = m < DEC (Vertical angles).
m < ABE = m < EDC ( Alternate Interior angles).
So triangles ABE and CDE are congruent by AAS.
Equation B is written in vertex form, which means you can read the vertex (extreme value) from the numbers in the equation.
Vertex form is
y = a(x -h)² + k
where the vertex (extreme point) is (h, k). Whether that is a maximum or a minimum depends on the sign of "a". When "a" is negative, the graph is a parabola that opens downward, so the vertex is a maximum.
Equation
B reveals its extreme value without needing to be altered.
The extreme value of this equation is a
maximum at the point
(2, 5).
Answer:
D
Step-by-step explanation:
Answer:
B
Step-by-step explanation:
These lines dont cross CD and are not parrellel which is what skew lines are.