It tends to in increase because the size of the atoms increase.
Answer:
9.6 moles O2
Explanation:
I'll assume it is 345 grams, not gratis, of water. Hydrogen's molar mass is 1.01, not 101.
The molar mass of water is 18.0 grams/mole.
Therefore: (345g)/(18.0 g/mole) = 19.17 or 19.2 moles water (3 sig figs).
The balanced equation states that: 2H20 ⇒ 2H2 +02
It promises that we'll get 1 mole of oxygen for every 2 moles of H2O, a molar ratio of 1/2.
get (1 mole O2/2 moles H2O)*(19.2 moles H2O) or 9.6 moles O2
<span>7.39 ml
For this problem, simply divide the mass of mercury you have by it's density.
100 g / 13.54 g/ml = 7.3855 ml
Since we only have 3 significant digits in 100., you need to round the result to 3 significant digits. So
7.3855 ml = 7.39 ml</span>