Answer:
slope =<u>-3</u>
4
Step-by-step explanation:
slope = <u>y2 - y1</u>
x2 - x1
=<u>2 - 5</u>
6 - 2
= <u>-3</u>
4
For large sample confidence intervals about the mean you have:
xBar ± z * sx / sqrt(n)
where xBar is the sample mean z is the zscore for having α% of the data in the tails, i.e., P( |Z| > z) = α sx is the sample standard deviation n is the sample size
We need only to concern ourselves with the error term of the CI, In order to find the sample size needed for a confidence interval of a given size.
z * sx / sqrt(n) = width.
so the z-score for the confidence interval of .98 is the value of z such that 0.01 is in each tail of the distribution. z = 2.326348
The equation we need to solve is:
z * sx / sqrt(n) = width
n = (z * sx / width) ^ 2.
n = ( 2.326348 * 6 / 3 ) ^ 2
n = 21.64758
Since n must be integer valued we need to take the ceiling of this solution.
n = 22
Answer:
The function y = sec(x) shifted 3 units left and 7 units down .
Step-by-step explanation:
Given the function: y = sec(x)
- If k is any positive real number, then the graph of f(x) - k is the graph of y = f(x) shifted downward k units.
- If p is a positive real number, then the graph of f(x+p) is the graph of y=f(x) shifted to the left p units.
The function
comes from the base function y= sec(x).
Since 3 is added added on the inside, this is a horizontal shift Left 3 unit, and since 7 is subtracted on the outside, this is a vertical shift down 7 units.
Therefore, the transformation on the given function is shifted 3 units left and 7 units down
Answer:
where is the question so that I can solve it
Answer:6018
Step-by-step explanation:
Given Sequence

It represent an A.P. with
first term 
common difference 
So sum of 51 term
![S_n=\frac{n}{2}[2a+(n-1)d]](https://tex.z-dn.net/?f=S_n%3D%5Cfrac%7Bn%7D%7B2%7D%5B2a%2B%28n-1%29d%5D)
![S_{51}=\frac{51}{2}\times [2\times (-282)+(51-1)16]](https://tex.z-dn.net/?f=S_%7B51%7D%3D%5Cfrac%7B51%7D%7B2%7D%5Ctimes%20%5B2%5Ctimes%20%28-282%29%2B%2851-1%2916%5D)
![S_{51}=\frac{51}{2}\times [-564+800]](https://tex.z-dn.net/?f=S_%7B51%7D%3D%5Cfrac%7B51%7D%7B2%7D%5Ctimes%20%5B-564%2B800%5D)
![S_{51}=\frac{51}{2}\times [236]](https://tex.z-dn.net/?f=S_%7B51%7D%3D%5Cfrac%7B51%7D%7B2%7D%5Ctimes%20%5B236%5D)

