Answer:

Explanation:
Hello!
In this case, according to the Avogadro's number, it is possible to compute the atoms of Kr in 2.00 moles as shown below:

Best regards!
Answer:
Explanation:
From the net ionic equation
Ba2+(aq) + SO42-(aq) ==> BaSO4(s) we see that 1 mole Ba2+ reacts with 1 mole SO42- to -> 1 mol BaSO4
Find moles of Ba2+ used: 0.250 moles/L x 0.0323 L = 0.008075 moles Ba2+
Find moles SO42- present: 0.008075 moles Ba2+ x 1 mol SO42-/1 mol Ba2+ = 0.008075 mol SO42-
Find mass of Na2SO4 present: 0.008075 mol SO42- x 1 mol Na2SO4/1 mol SO42- x 142.04 Na2SO4/mole = 1.14698 g = 1.15 g Na2SO4 (to 3 significant figures)
the environment is Healthy
Explanation:
Lithium diisopropylamide (LDA) is used in many organic synthesis and is a strong base. It is prepared by the acid base reaction of N,N-diisopropylamine ( [(CH₃)₂CH]₂NH ) and butyllithium ( Li⁺⁻CH₂CH₂CH₂CH₃ ).
The equation is show below as:
[(CH₃)₂CH]₂NH + Li⁺⁻CH₂CH₂CH₂CH₃ ⇒ [(CH₃)₂CH]₂N⁻Li⁺ + CH₃CH₂CH₂CH₃
N,N-diisopropylamine ( [(CH₃)₂CH]₂NH ) is a weaker acid and hence, LDA ( [(CH₃)₂CH]₂N⁻Li⁺ ) is stronger base. (Weaker acid has stronger conjugate base)
Butyllithium ( Li⁺⁻CH₂CH₂CH₂CH₃ ) is a very strong base and hence, butane ( CH₃CH₂CH₂CH₃ ) is a very weak acid. (Strong base has weaker conjugate acid)
potassium reacts the most vigorously.