Answer:
29.41% of Calcium and 47.04% of Oxygen
Explanation:
The percent composition of an atom in a molecule is defined as 100 times the ratio between the mass of the atom and the mass of the molecule.
The mass of the molecule of the problem (Ore) is 46.28g. That means the percent composition of Calcium is:
13.61g / 46.28g * 100 = 29.41% of Calcium
And percent composition of Oxygen is:
21.77g / 46.28g * 100 = 47.04% of Oxygen
By circle fraction additional number for the number
The result of Moseley's revisions were that the elements were arranged in atomic number order rather than atomic mass order.
Answer:
Adding a catalyst - More collisions every second and more collisions with enough energy to break bonds.
Increase in pressure - more collisions every second
Increase in temperature - more collisions every second with enough energy to break bonds
Explanation:
According to the collision theory, chemical reaction occurs as a result of collision between reacting particles. Only particles that possess energy above the activation energy of the reaction can collide and result in product formation. Collision of particles having energy less than the activation energy merely result in elastic collisions.
Adding a catalyst lowers the activation energy of the reaction. If the activation energy is lowered, more reactants collide and more of those collisions now have enough energy to break bonds.
When the temperature is increased, the particles become more energetic hence more collisions with energy to break bonds occur.
Increase in pressure brings the reactant particles into close proximity hence more collisions occur.
Answer : The total change in enthalpy of this reaction is 25 kJ.
Explanation :
Enthalpy of reaction : It is defined as the changes in heat energy takes place when reactants go to products. It is denotes as .
ΔH = Energy of product - Energy of reactant
ΔH is positive when heat is absorbed and the reaction is endothermic.
ΔH is negative when heat is released and the reaction is exothermic.
In the given potential energy diagram, the energy of product at higher level and energy of reactant at lower level. The ΔH for this reaction will be positive.
Given:
Energy of product = 55 kJ
Energy of reactant = 30 kJ
ΔH = Energy of product - Energy of reactant
ΔH = 55 kJ - 30 kJ
ΔH = 25 kJ
Thus, the total change in enthalpy of this reaction is 25 kJ.