1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nasty-shy [4]
3 years ago
15

Reactive elements such as alkali metals and halogens are found in nature only as

Physics
1 answer:
bonufazy [111]3 years ago
4 0

Compounds

Explanation:

Reactive elements such as alkali metals and halogens are found in nature only as compounds. Such elements are too unstable to remain as stable atoms, therefore they readily combine and form compounds.

  • Compounds are formed when two atoms combines together to share electrons.
  • They either lose, gain, or share electrons between themselves.
  • In the end, they end up becoming more stable.
  • This is the reason why atoms combine.
  • Unstable elements are very reactive especially alkali metals and halogens.
  • On their own, they are unstable and prefers to bond with other atoms in order to gain a measure of stability.
  • This is why they are found in combined state in nature.

Learn more:

Compound brainly.com/question/10585691

Noble gases brainly.com/question/1781595

#learnwithBrainly

You might be interested in
Continuous sinusoidal perturbation Assume that the string is at rest and perfectly horizontal again, and we will restart the clo
Elena-2011 [213]

a) 3.14 \cdot 10^{-4} s

b) See plot attached

c) 10.0 m

d) 0.500 cm

Explanation:

a)

The position of the tip of the lever at time t is described by the equation:

y(t)=(0.500 cm) sin[(2.00\cdot 10^4 s^{-1})t] (1)

The generic equation that describes a wave is

y(t)=A sin (\frac{2\pi}{T} t) (2)

where

A is the amplitude of the wave

T is the period of the wave

t is the time

By comparing (1) and (2), we see that for the wave in this problem we have

\frac{2\pi}{T}=2.00\cdot 10^4 s^{-1}

Therefore, the period is

T=\frac{2\pi}{2.00\cdot 10^4}=3.14 \cdot 10^{-4} s

b)

The sketch of the profile of the wave until t = 4T is shown in attachment.

A wave is described by a sinusoidal function: in this problem, the wave is described by a sine, therefore at t = 0 the displacement is zero, y = 0.

The wave than periodically repeats itself every period. In this sketch, we draw the wave over 4 periods, so until t = 4T.

The maximum displacement of the wave is given by the value of y when sin(...)=1, and from eq(1), we see that this is equal to

y = 0.500 cm

So, this is the maximum displacement represented in the sketch.

c)

When standing waves are produced in a string, the ends of the string act as they are nodes (points with zero displacement): therefore, the wavelength of a wave in a string is equal to twice the length of the string itself:

\lambda=2L

where

\lambda is the wavelength of the wave

L is the length of the string

In this problem,

L = 5.00 m is the length of the string

Therefore, the wavelength is

\lambda =2(5.00)=10.0 m

d)

The amplitude of a wave is the magnitude of the maximum displacement of the wave, measured relative to the equilibrium position.

In this problem, we can easily infer the amplitude of this wave by looking at eq.(1).

y(t)=(0.500 cm) sin[(2.00\cdot 10^4 s^{-1})t]

And by comparing it with the general equation of a wave:

y(t)=A sin (\frac{2\pi}{T} t)

In fact, the maximum displacement occurs when the sine part is equal to 1, so when

sin(\frac{2\pi}{T}t)=1

which means that

y(t)=A

And therefore in this case,

y=0.500 cm

So, this is the displacement.

6 0
3 years ago
Please help on this one
Murljashka [212]
Just find the area of the graft

4m/s x 5s
=20m

7 0
3 years ago
Read 2 more answers
was an American writer, poet, editor, and literary critic. Poe is best known for his poetry and short stories
Art [367]

Answer:

poet

Explanation:

4 0
3 years ago
The thermal efficiency of a power cycle operating in a reversible manner is found to be 50%. Assuming that the same 2 thermal re
inna [77]

Answer:

Explanation:

The thermal efficiency of a Power cycle \eta = \dfrac{Q_H -Q_c}{Q_H}

where;

\eta = 50\% = 0.5

Q_H = Heat \ flow \ from \ higher \ temperature

Q_c = Heat \ flow \ from \ lower \ temperature

0.5 = \dfrac{Q_H -Q_c}{Q_H}

0.5 Q_H = Q_H - Q_c --- (1)

Q_c = 0.5 Q_H         ---- (2)

The coefficient of performance is:

COP_R = \dfrac{Q_c}{Q_H -Q_c}

let replace the value of Q_c = 0.5 Q_H   in the above equation then;

COP_R = \dfrac{0.5Q_H}{Q_H -0.5 Q_H}

COP_R = \dfrac{0.5Q_H}{0.5 Q_H}

COP_R = 1

The

On the other hand,  the heat pump

COP_{HP} = \dfrac{Q_H}{Q_H -Q_c}

By replacing equation (1) into the above equation; we have:

COP_{HP} = \dfrac{Q_H}{0.5Q_{H}}

COP_{HP} = \dfrac{1}{0.5}

COP_{HP} =2

t

5 0
3 years ago
A car comes to a bridge during a storm and finds the bridge washed out. The driver must get to the other side, so he decides to
aksik [14]

Answer:

The answer is below

Explanation:

a) The vertical displacement = Δy = 21.5 m - 1.5 m = 20 m

The horizontal displacement = Δx = 69 m wide

Using the formula:

\Delta y = u_yt+ \frac{1}{2}a_yt^2\\ \\u_y=initial\ velocity\ of \ car\ in\ y\ direction = 0,a_y=g=acceleration\ due\ to\ gravity\\=10m/s^2\\\\\Delta y =  \frac{1}{2}a_yt^2\\\\\Delta y=\frac{1}{2}a_yt^2\\\\t=\sqrt{\frac{2\Delta y}{a_y} }=\sqrt{\frac{2*20}{10} }  =2\ m/s

Also:

\Delta x = u_xt+ \frac{1}{2}a_xt^2\\ \\u_x=initial\ velocity\ of \ car\ in\ x\ direction = 0,a_x=acceleration=0\\\\\Delta x =  u_xt\\\\u_x=\frac{\Delta x}{t}=\frac{69}{2} =34.5\ m/s

b)The car is moving at a constant speed in the horizontal direction, hence the initial velocity = final velocity

v_x=u_x=34.5\ m/s\\\\v_y=u_y+a_yt\\\\v_y=0+gt\\\\v_y=10(2)=20\ m/s\\\\v=\sqrt{v_x^2+v_y^2}=\sqrt{34.5^2+20^2}=39.9\ m/s\\ v=39.9\ m/s

4 0
4 years ago
Other questions:
  • Question 1 Unsaved
    14·1 answer
  • A standard baseball has a circumference of approximately 23 cm. if a baseball had the same mass per unit volume (see tables in s
    13·2 answers
  • What does 34.9cL equal in hL
    14·1 answer
  • . A projectile of mass 2 kg is fired with a speed of 20 m/s at an angle of 30° with respect to the horizontal. (a) Calculate the
    13·1 answer
  • When you hear sound pulses (beats), describe how you will determine the beat frequency. Include in your answer what steps you wi
    8·1 answer
  • A current of 16.5 mA is maintained in a single circular loop with a circumference of 2.55 m. A magnetic field of 0.720 T is dire
    6·1 answer
  • Which option lists a form of potential energy followed by a form of kinetic energy?
    11·2 answers
  • A girl whirls a stone in a horizontal circle 1.50 m above the ground by means of a string 165 cm long. The string breaks, and th
    5·1 answer
  • The table lists the range of wavelengths in vacuum corresponding to a given color. If light one illuminates a film that has a re
    14·2 answers
  • A pair of 10μF capacitors in a high-power laser are charged to 1.7 kV.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!